19. The time per attached to spe	iod of an oscillating ring is doubled then th	mass spring system ne period becomes.	is 10 seconds. If mass
(A) 10 S	(B) 20 S	(C) 5 S	(D) 10 √2 s
20. Total Energy of	Mass Spring System a	t Displacement $x = \frac{\lambda}{2}$	2
(A) $\frac{1}{2}kx_{o}^{2}$	(B) $\frac{1}{2}k(x_{\sigma}^{2}-x_{\sigma}^{2})$	(C) kx_0^{-2}	(D) $\frac{1}{4}kx_n^2$
Topic IV: Simple	Pendulum:		
	simple pendulum only		(2 times)
(A) Mass of the bol		(B) length of the pe	endulum
(C) amplitude of vit		(D) size of the bob	
(A) 1 Ha	of second pendulum is (B) 2 Hz	: , (C) O E U-	(4 Times)
23. Which expressi	on is correct for the tir	(C) U.S HZ	nendulum:
		_	
	(B) $T \propto m$		
(A) Unaffected	a simple pendulum is (B) Double	(C) Half	(D) 1 41 as large
• •	ulum becomes double,	then its time neriod	will be: (5 Times)
(A) Double	(B) Half	(C) Four time	(D) Remain same
	od of simple pendulum	is 2 seconds its frequ	ency will be: (3 times)
(A) 1.0 Hz	(B) 0.5 Hz	(C) 1.5 Hz	(D) 2 Hz
	ating pendulum its acco	eleration "a" is:	
(A) $a \propto \theta$		(B) a ∝ time period	
(C) $a \propto \theta$ Length of	•	(D) $a \propto \theta$ mass of b	oob
	cond's pendulum is:	(0) 00 0	Control of the state of the sta
(A) 100 cm	(B) 90cm	(C) 99.2 cm	(D) 98 cm
(A) mg CosA	nsible for the vibratory (B) mg Sec θ	(C) ma Sin A	
30. The correct rela	tion between frequenc	v and time period is:	(D) Mg Tan θ
(A) $\frac{f}{T} = 1$	T	(C) f x T = 2	Park to the second seco
	$\int_{f} \int_{f} \int_{f$		(D) $f \times T = 1$
	of Simple Pendulum is g	_	<u> </u>
(A) $\frac{1}{2\overline{\wedge}}\sqrt{\frac{g}{l}}$	(B) $2\overline{\wedge} \int_{I}^{g}$	(C) $\frac{1}{2\bar{\Lambda}}\sqrt{\frac{l}{g}}$	(D) $2\overline{\Lambda}$ $\sqrt{\frac{1}{a}}$
	simple pendulum is incre	$2 \wedge \sqrt{g}$	31.0
Jan ampirtude of a	miple pendulum is mere	ased by 4 times then til	ne period will be: (2 times)
(a) Four times	(b) Half	(c) Same	(d) two times
33. At which place t	he motion f a simple p		est:
(A) Karachi	(B) K – 2	(C) Murree	(D) Lahore
34. By increasing the	e mass of a simple pen		
(A) Increases	(B) Decreases	(C) Remains same	(D) Become zero
Hopic V. Energy C	onservation in Simp	ole Harmonic Moti	on:
35. The maximum K.	E of a mass attached to		spring is:
(A) $\frac{1}{2}kx^2$	(B) $\frac{1}{2}k\dot{x}_{0}^{2}$	(C) $\frac{1}{4}kx_0^2$	(D) kx_0^2
36.The P.E stored by stored by the sar	ny a mass spring systeme systeme	em at an extension of the sion	of 2cm is 10J. The P.E
(A) 10 J	(B) 20 J	(C) 30 J	(D) 40 J
37.The velocity of a	particle having SHM	is V at mean positi	on. If its amplitude is
(A) v/2	ocity at mean position		(0) 41/
		(C) 2V	(D) 4 V
	g constant $10\frac{N}{m}$ after le	oading the amplitude	is 2m. Then the
maximum P.E. is: (A) 10 J		(0) 20 1	(0) (0)
(1) 101	(B) 20 J	(C) 30 J	(D) 40 J

20 Total energy of	a particle executing S	.H.M is:	
1 102	(B) $\frac{1}{2}k(x^2-x^2)$	ic\ 1 i?	(2) 1, (2, 2)
(A) - A	2 171	$(C) = k\alpha_0^2$	(D) $\frac{1}{2}k(x^2-x_a^2)$
Topic VII: Resona	nce: ween node and antir		
40.The distance bet	ween node and antir	nodes:	
(A) 4 \(\lambda \)	(B) 2λ	(c) $\frac{\lambda}{2}$	$(D) \frac{\lambda}{\lambda}$
(A) The	of a wave is 0.2 c. les	2	(D) $\frac{\lambda}{4}$ (2 Times)
41. The time period	of a wave is 0.2 s. Its (B) 3 Hz	(C) 4 Hz	(2 Times) (D) 5 Hz
(A) 2 Hz		a medium at a sneed	of 30 ms ⁻¹ the wavelength
is:		(2)	times)
(A) 30 m	(B) 15 m	(C) 1 m	(D) 280 m
43. The waves prod	uced in microwave or	ven have a waveleng	th of:
(A) 12cm	(B) 12 m	(C) 18 m	(D) 18 cm
44.Tuning of radio (A) Mechanical reso	is example or:	(D) Clastrian rose	
(C) Physical resonal	nce	(B) Electrical resort (D) Biological reso	
45 The frequency	of waves produced in	microwave oven is:	(3 Times)
(a) 2250 MHz	(b) 2450 MHz	(c) 2650 MHz	(d) 2850 MHz
46.On loading the	prong of a tuning fork	with wax, the freque	ency of sound:
(a) Increases		(b) decreases	
(c) remains same	- la autamahilas is a n	(d) first increases	then decreases
	r in automobiles is a p	(C) Forced oscillation	s (D) None of these
	the second section of the sect	(c) rorcea oscination	5
IODIC VIII: Dami	oed Oscillations:	issinated from the os	cillating system is called.
(A) Forced oscillation	on	(B) Free Oscillation	ns v
(C) Simple harmoir	nic oscillations	(D) Damping	.8
(9/01117101111111111111111111111111111111	ar da situajner e	2018	8
49 The notential en	ergy of a spring mass vi	brating system at its m	an position is:
, , , , ,	/I-\ A A::	(c) Fallal (b) K F	LUI ZEIO
50. By increasing m	ass of the object four tir	mes attached to a sprin	g. Time period will become: (D) four times
			e of area 10cm², flow
51. A hose pipe ej			
rate will be: (A) 3m ³ S ⁻¹	(B) $3 \times 10^{-4} \mathrm{m}^3\mathrm{S}^{-1}$	(C) 30 m ³ S ⁻¹	(D) 0.03 m ³ S ⁻¹
52. When three-fo	ourth of the cycle of a	vibrating body compl	eted then the phase of
vibration is:		X V	
(A) $\frac{\pi}{4}$ radian	(B) $\frac{\pi}{2}$ radian	(C) $\frac{3\pi}{2}$ radian	(D) π radian
53. When the amp	olitude of oscillation is	doubled then its ene	(D) six times
(A) double	(B) four times	(C) one half	(D) six times
54. Maximum vel	ocity in SHM Is:	$(C) x\omega$	(D) $x_a^2 \omega$
(A) $x_o \omega^2$	(B) $x_{\alpha}\omega$		
		2019	noried becomes:
55. If the length o	f simple pendulum is	(c) $\sqrt{2}$ times	(D) 4 times
(A) half	(B) 2 times	(C) √2 times	instant is: (2 Times)
56. Potential ener	(B) 2 times rgy of oscillating mass	(C) $\frac{1}{2}$ KX ₀ ²	$(D) \frac{1}{2} \kappa x^2$
		ICI IXA	(0)
57. Distance cove	(B) KX2 red by a body in one v	ibration us 20 cm. In	e amplitude of the
Vibration will	be.	(C) 15 cm	(D) 20 cm
(A) 10 cm	(B) 5 cm dulum is completing 20	vibration in 5 second	ls, its frequency is:
o. A simple pend	Julum is compression		(2 Times)

(A) 4	Hz			(B) 2	0 Hz			(C)	200 H	z		(D)	40 Hz	100	ur.
EQ A	ccolo	ration	a in S	нмі	s nro	portio emer	mai to	o tne:					Vater		
60. T	he to	y tal en	ergy								of.	Terrain s		,	
(A) n	nass o	fthe	body		,	ring sy	٨.	(B) a	mpliti ature	ude of m		lofer	rina	117	
(C) s	pring	const	ant ob of	cimpl	o nen	dulur	n is at	t extr	eme n	ositic	on the	n its	ring K.F is:	**	11.
(A) n	vnen 1axim	um um	00 01	(B) m	inim	um		(C) z	ero			(D) s	mall	٠	
			_				F 55-171	111	1 5			111		n inches	
62.	$\frac{1}{g}$ an	$a\sqrt{k}$	- nas	sam	е.		- 14	(0)	y :	9		(5) =			
(A) 1	Nume	rical v	alue	(B) L	Jnits		****	(C) L)ampi	ng		(D) T	ime p	eriod	
						lisplac						(0) 7			
(A) X	= X ² o: Vhen	sın wt a Trar	never	(B) X	= sin	wt vellin	g in r	(C) X	= X ₀ .Co	os wt	ident	on de	ero	mod:	7.
	ftorr	aflarti	ion ni	1250 0	hang	ac hw								mean	um
(A) 3	860°			(B) 18	80°			(C) 90) ° '			(D) 0	0		
65. 1	ne ais	stance	cove	red b vibrat	y a bo	ody in	one o	compl	ete vi	ibratio	on is 2	20cm,	what	is the	9
(A) 1	0 cm			(B) 80	cm.	1.4	of sec.	(C) 5	cm	est se	2000	(D) 2	0 cm		
66. lr	1 orde	er to d	louble	perio	od of	a sim	ple pe	endul	um th	e leng	th of	the p	endu	lum si	hould
(A) F	e incr our tir	eased nes	ı by:	(B) Th	ree t	imes-	H	(C) Ty	vo tim	ies	• • •	(D) Ei	aht ti	mar	
				detain.		i de ligitar El de ligita							giit tii	iles ,	9 6
	50° -		(4)	+5:	Marin !		-w	-	police E	Style -	Sept.	5Q: -	,	7	
67. A	cceler	ation	of a p	endul	um of	lengtl	l=1	lma	nd dis	place	ment	of 5	m ha	ving S	.н.м
. 13	• 13					1.11 15.51		411 1 7 101 -			L. alling &	-	SS 0	1	A 80
68.At	resor	nance	the	(B) U.	19m	/ s² energ		(C) 0	.69 m	$/s^2$		(D) 0	.49 m	$/s^2$	
(A) Z6	ro.			(B) M	inimi	rn	* S S V V	(C) M	avimu	-		10:5		474 AL.	
03	CHEC	וו טו נו	116 2111	ible b	enau	lum is	unon:	nia th	on itc	norio	d:	<i>M</i> 2			
1/1/	1,40	t mne		(0) 2 1	umes			(C) 2.4	4 time	es	Z	(D) 3 1	imes	प्राप्त ग	
(A) 2.	0 Hz	quent	.y 01 t	/R) 1 '	st per	iauiui	m is:	1011	100	May 1	-00	23/4574	Alex v	ب الجارية	6
71. Er	nergy	of pai	rticle	execu	iting S	SHM o	fami	(C) 1.(alitud	JHZ o Yi	s pro	2	(D) 0.	5 Hz		
(A) X	2														
	9			(B) X_{δ}		1	- 7	(C) X_0	, its p	11		(D) A	"/2		
72. If (A) W	ill not	ngtn chang	or a s	imple	pend	ulum	is do	ubled	, its p	eriod:	10 9	1-10-	in gir	red.	M Tr
(C) Wi	ll be h	alved						(C) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ll also					ST FIRE	1.
73. If (A) 10	pendu	ılum ı	vibrat	e wit	h freq	uenc	V U.5 I	Hz, th	il incre	lengt	y 1.4 t h will	mes he		- IDET	
(A) 10	cm			(B) 50	cm	ont se	3-	(C) 80	cm	(D) 99 cr	n n	(1 - 2 - 2 - 2	A Property	
				ANSW	ERS (OF TH	E MU	LTIPLE	E CHIC	E OU	ESTIO	NS.			1.
	1	2	3	4	-5	6	70	8	9	10	11	12	13	14	15
	A	В	A	D	В	В	B	A	В	D	В	D	В	В	A
111	. 16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
	31	D	В	D	Α	В	С	С	Α	D	В	A	С	С	D
		32	33	34	35	36	37	38	39	40	41	42	43	44	45
, Š	46	C 47	_B	C	_B	D	. C	В.	С	D	D	С	Α	В	В.
	B	B B	48	49	50	51	52	53	54	55	56	57	58	59	60
	61	62	D 63	D 64	B	В	С	В	В	С	D	В	Α	В	A
	C	B .	C	64 B	65	66	67	68	69	.70	71	72	73	12.5	*
			-	D	C	A	D	_C_	Α	C	Α	· D	D.		

SHORT QUESTIONS OF CHAPTER-7 **IN ALL PUNJAB BOARDS 2011-2021**

Topic I: Simple Harmonic Motion:

Define vibratory motion.

The to and fro motion of a body about a fixed point is called the vibratory or Ans: oscillatory motion.

Name two characteristics of S.H.M. 2.

(12 times)

The characteristics of SHM are: Ans:

Acceleration of the body is directly proportional to the displacement and is always directed towards mean position. $a \propto -x$

Total energy of the particle executing SHM remains conserved.

 $E_{total} = K.E. + P.E. = constant$

What is the total distance travelled by an object moving with SHM in a time 3. equal to its period, if its amplitude is A? (5 Times)

The total distance travelled by an object moving with SHM in its time period is Ans: 4A, where A is amplitude of vibration.

Does the acceleration of a simple harmonic oscillator remain constant during 4. the motion? Is the acceleration ever zero? Explain briefly.

No, it does not remain constant. The acceleration of a body executing SHM is, Ans:

 $a = -\omega^2 x$

Where x is the displacement from the mean position and a is acceleration which varies directly with x. As x changes during a SHM, its acceleration does not remain constant. The acceleration becomes zero at mean position and becomes maximum at extreme position.

State Hook's law. Write it in mathematical form. 5.

(3 times)

It states that within elastic limit the applied force is directly proportional to the Ans: displacement. Mathematically,

What is the difference between displacement and amplitude? 6.

During simple harmonic motion the value of distance from the mean position is Ans: called displacement.

The displacement is maximum at extreme position and the maximum value of displacement is known as amplitude.

Displacement varies with time while amplitude remains same.

Under what conditions does the addition of two simple harmonic motions 7. produce a resultant which is also simple harmonic. (4 Times)

The addition of two simple harmonic motions of the same frequency having Ans: constant phase difference but of different amplitudes taking place in the same direction produces a resultant which is also a SHM, the amplitude of which is equal to the algebraic sum of the amplitudes of the two component SHMs.

Why the motion of projection of a point revolving in a circle with variable 8. angular velocity is not Simple Harmonic Motion?

Simple Harmonic Motion is a periodic motion which repeats itself after equal interval of time and also $a \propto -x$. Thus, if point is revolving in a circle with variable angular velocity then the motion of projection is not Simple Harmonic Motion.

What is slinky spring?

A large and loose spring coil is called slinky spring. It can be used to demonstrate. Ans: the effect of the motion of the source in generating waves in a medium.

Define frequency and give its unit. 10.

Number of vibrations per second is called frequency. Its S.I unit is Hz. Ans: Define angular frequency. Give its formula and unit.

11,

Number of cycles per second is called angular frequency. It is denoted by ω . Ans:

Formula $\omega = \frac{2\pi}{T} = 2\pi f$

12. Define periodic motion. Give example.

Ans: Periodic motion is the one that repeats itself after equal intervals of time. Vibratory motion of mass-spring system and simple pendulum is periodic.

13. Explain restoring force and what is its direction?

Restoring force opposes the change in shape of a body and is equal and opposite Ans: to applied force.

 $F_{\star} = -Kx$

It is directed towards mean position.

Topic III: Phase:

What do you mean by phase? 14. (6 Times)

The angle heta which specifies the displacement as well as the direction of motion Ans: of the point executing SHM is known as phase. $\theta = \omega t$

What is meant by phase angle? Does it define angle between max 15. displacement and the driving force? (7 Times)

The angle heta which specifies the displacement as well as the direction of motion Ans: of the point executing SHM is known as phase angle. It does not define angle between maximum displacement and driving force. It is the angle that the rotating radius makes with the reference direction.

In relation to SHM, explain the equation: 16. $y = A\sin(\omega t + \varphi)$

(3 Times)

i. $y = A \sin(\omega t + \varphi)$ Ans:

y is the instantaneous displacement

A is the amplitude

 ωt is the phase angle subtended in time t

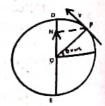
 φ is the initial angle . ii. $a = -\omega^2 x$

Here

a is the acceleration

 ω is the angular frequency

x is the instantaneous displacement


Negative sign shows that acceleration and displacement are in opposite

In the relation to S.H.M explain the equation $v = A \sin(\omega t + \phi)$. 17. Ans: This equation represents the displacement of simple harmonic oscillator as a function of time, and also tells that displacement follows a sine curve i.e. varies harmonically. 'y' is instantaneous displacement, 'A' is the amplitude, ' ϕ ' is initial phase angle, $(\omega t + \phi)'$ is the phase angle made with reference direction and $\omega t'$ is the angle subtended in time 't' with angular frequency ' ω ' starting from initial

18. Define phase angle with diagram,

vibrating point.

The angle which gives the displacement as well as direction of motion of point executing SHM is called Phase Angle. Thus, it determines the state of motion of vibrating point. In the figure $\theta = \omega t$ is phase angle.

19. What is meant by phase angle and initial phase?

The angle which gives the displacement as well as direction of motion of point executing SHM is called Phase Angle. Thus, it determines the state of motion of

If a body does not start its motion from mean position then the phase angle at the starting position is called initial phase.

Topic IV: Horizontal Mass Spring System:

Define restoring force and simple harmonic motion.

Restoring force: The force that brings back the oscillatory object towards its Ans: mean position is called the restoring force. F = -kx

Simple harmonic motion: The vibratory motion in which the acceleration of the body is proportional to displacement and is directed towards its mean position is called simple harmonic motion. $a \propto -x$

If a mass spring system is hung vertically and set into oscillations, why does the 21. (21 Times) motion eventually stop?

If the mass spring system is hung vertically and set into oscillation, the motion Ans: eventually stops due to friction and air resistance and some other damping forces.

(14 Times) Does frequency depend on amplitude for harmonic oscillator? 22.

Ans:

$$f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$

$$f = \frac{1}{2\pi} \sqrt{\frac{g}{m}}$$

And

So the frequency of the oscillator is independent of the amplitude of oscillation.

The equation for SHM of an object is given by $x = 0.25 \cos(\pi/8)t$ What will be the displacement after 2 Seconds?

Given that Ans:

$$x = 0.25 \cos\left(\frac{\pi}{8}\right) t$$

Putting t = 2s

$$x = 0.25 \cos\left(\frac{\pi}{8}\right) 2$$

 $x = 0.25 \cos\left(\frac{\pi}{4}\right)$
 $x = 0.25 (0.707)$
 $x = 0.18 m$

What will be the potential energy of a mass attached to a spring at amplitude of 24. 5 cm, if its spring constant is 10 Nm⁻¹?

Ans:

$$x_0 = 5 \text{ cm} = 0.05 \text{ m}$$

 $K = 10 \text{ Nm}^{-1}$

For a mass spring system

P.E =
$$\frac{1}{2}$$
 k x_0^2
P.E = $\frac{1}{2}$ (10) (0.05)²
P.E = 0.0125 J

The amplitude of simple pendulum should be small, why? 25.

If amplitude of simple pendulum is large then force of air friction changes its Ans: time period. Therefore amplitude should be kept small.

Define Simple Harmonic oscillator and driven harmonic oscillator. 26.

The oscillator motion taking place under the action of restoring force is known as simple harmonic motion . A body such as simple pendulum, executing SHM is Ans: called simple harmonic oscillator.

A physical system undergoing forced vibrations is known as driven harmonic

Does the frequency of simple pendulum depend on amplitude or length of 27. simple pendulum? Explain.

Frequency of simple pendulum is given as Ans:

$$f = \frac{1}{2\pi} \sqrt{\frac{g}{l}}$$

This relation shows that frequency of simple pendulum does not depend on amplitude. It depends on length of simple pendulum.

28. What are the factors on which frequency of a spring-mass system depends?

Ans: Frequency of a mass - spring system is given by

$$f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$

It depends upon spring constant and mass attached.

- 29. Derive the relation $\omega = \sqrt{\frac{k}{m}}$.
- Ans: For a mass-spring system which can move freely on a frictionless horizontal surface, acceleration produced in the mass due to restoring force can be calculated using 2nd law of motion.

$$F = ma$$

Then
$$-Kx = ma$$

$$\alpha = -\frac{k}{m}x \rightarrow (i)$$

By definition of simple harmonic motion.

$$\alpha = -\omega^2 x \rightarrow (ii)$$

Comparing eq. (i) and (ii).

$$-\omega^2 x = \frac{k}{m} x$$

$$\omega^2 = \frac{k}{m}$$

$$\omega = \sqrt{\frac{k}{m}}$$

- 30. Show that for a body attached with a spring $\vec{a} = \frac{-k}{x}$.
- Ans: Let us consider a mass attached with a spring which can move freely on a frictionless horizontal surface. The acceleration a produced in the mass due to F = ma

But from Hooke's law $\vec{F} = -k\vec{x}$

Then,
$$-kx = ma$$

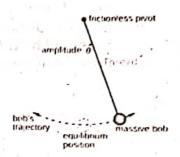
Or
$$\vec{a} = -\frac{k}{m} \vec{x}$$

- 31. If mass of a spring-mass vibrating system is increased by four times. What is
- Ans: Frequency of mass-spring system is given as

$$f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$

Let m' = 4m then

$$f' = \frac{1}{2\pi} \sqrt{\frac{k}{m'}}$$
$$= \frac{1}{2\pi} \sqrt{\frac{k}{4m}}$$
$$= \frac{1}{2} \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$


$$f' = \frac{1}{2}f$$

Hence, frequency will be halved.

Topic V: Simple Pendulum:

What is simple pendulum? 32.

A simple pendulum consists of a mass m hanging Ans: from a string of length L and fixed at a pivot point P. When displaced to an initial angle and released, the pendulum will swing back and forth with periodic motion.

(4 Times)

Can we realize an ideal simple pendulum? 33.

(10 Times) No, we can't realize an ideal simple pendulum. Because an ideal simple Ans: pendulum should consist of a heavy but small metallic bob suspended from a frictionless rigid support by means of long, weightless and inextensible string. And these conditions are impossible to attain.

Calculate the length of the simple pendulum which completes one vibration in 34.

What should be the length of simple pendulum whose period is one second? OR

It is given that

Since

 $g = 9.8 \, \text{ms}^{-2}$ T=1s

 $l = \frac{(1)^2(9.8)}{4(3.14)^2} = 0.248 \, m = 24.8 \, cm$

Why the amplitude of lead bob is greater than pith ball as the bobs having equal size and length set into vibration?

It is because the mass of lead bob is much greater than the very light pith ball, so Ans: lead bob can travel to greater extent in air against the resistive and retarding forces. Lead bob has greater inertia.

What happens to the period of a simple pendulum if its length is doubled? 36. What happens if the suspended mass is doubled?

Ans: The time period of a simple pendulum is,

 $T = 2\pi \sqrt{\frac{\ell}{g}}$ If length ' ℓ ' is doubled, equ. becomes

 $T' = 2\pi \sqrt{\frac{2\ell}{g}} = \sqrt{2} \times 2\pi \sqrt{\frac{\ell}{g}} = \sqrt{2} T = 1.41T$

So when length is doubled, Tincreases 1.41 times. Whereas if mass is doubled, Tremains same because T of simple pendulum is independent of mass as it is clear in above relation.

What happens to the period of the simple pendulum if the length is halved and mass of bob is doubled?

Time period of simple pendulum is given as

 $T = 2\pi \sqrt{\frac{\ell}{g}}$

0

0

If length ' ℓ ' is halved, equ. becomes

$$T' = 2\pi \sqrt{\frac{\ell}{2g}} = \frac{1}{\sqrt{2}} (2\pi \sqrt{\frac{\ell}{g}}) = \frac{1}{\sqrt{2}} T = \frac{1}{1.41} T$$

Whereas if mass is doubled, T remains same because T of simple pendulum is independent of mass as it is clear in above relation.

38. What should be the natural period of Simple Pendulum whose length is 90 cm? Ans: Time period of simple pendulum is given as

$$T = 2\pi \sqrt{\frac{1}{g}}$$
If $l = 90cm = 0.9m$

Then
$$T = 2(3.14)\sqrt{\frac{0.9}{9.8}}$$

 $T = 1.90 \text{ s}$

Which is required natural time period.

Topic VI: Energy Conservation in Simple Harmonic Motion:

Show that in SHM the acceleration is zero when velocity is greatest and the 39. velocity is zero when acceleration is maximum. Ans: The acceleration of SHM is

$$a=-\omega^2x$$

And velocity of SHM is

$$v = \omega \sqrt{x_0^2 - x^2}$$

At mean position x = 0, so

$$a = 0$$
; $v = \omega x_0$ (maximum value)

At extreme position $x = x_0$, so

$$a = -\omega^2 x$$
; $v = 0$ (velocity becomes zero)

40. Explain relation between total energy, potential energy and kinetic energy for a body in simple harmonic motion. Ans:

When the K.E of the mass is maximum, the P.E of the spring is zero. Conversely, when the P.E of the spring is maximum, the K.E of the mass is zero. The interchange occurs continuously from one form to the other but the total energy

A mass-spring system is vibrating with amplitude 10 cm. Find its K.E. and P.E at 41. equilibrium position, when spring constant is 20 Nm⁻¹.

Gives that $x_0 = 10cm = 0.1m$ Ans:

At equilibrium position x = 0

We know that at equilibrium position

$$P.E = 0$$

And
$$K.E = \frac{1}{2}kx_o^2$$

= $\frac{1}{2}(20)(0.1)^2$
= 0.1 J

Topic VII: Free and Forced Oscillations:

42. Describe free vibrations.

A body is said to be executing free vibrations when it oscillates without the Ans:

What do you understand by forced vibrations? Explain with examples. 43.

If an oscillating system is subjected to an external periodic force, then forced Ans: vibrations will take place. The vibrations of a factory floor caused by the running of heavy machinary is an 1.

example of forced vibrations.

- The mass of a vibrating pendulum is struck repeatedly, the forced vibrations are 11. produced.
- Define free and forced oscillations. 14.

Explain free and forced oscillations. OR

(10 Times)

Differentiate between free and force oscillations. OR

Free oscillations: A body is said to be executing free vibrations when it oscillates Ans: without the interference of an external force.

Forced oscillations: If an oscillating system is subjected to an external periodic force, then forced vibrations will take place.

The vibrations of a factory floor caused by the running of heavy machinary is an example of forced vibrations.

The mass of a vibrating pendulum is struck repeatedly, the forced vibrations are

Define driven harmonic oscillator and damped oscillations. 45.

Damped oscillations: The oscillations in which the amplitude decreases steadily Ans: with time are called damped oscillations. Driven harmonic oscillator: The physical system undergoing forced vibrations is known as driven harmonic oscillator.

What is driven harmonic oscillator? Give example. 46.

A physical system under going forced vibrations is called driven harmonic oscillator.

An example of forced vibrations is loud music produced by sounding wooden boards of strings instruments.

What is the difference between free and driven harmonic oscillators?

Ans: A body is said to be executing free vibrations when it oscillates without the interference of an external force. For example, a simple pendulum vibrates freely with its natural frequency.

A physical system under going forced vibrations is known as driven harmonic oscillator. For Example, the vibrations of a factory floor caused by the running of heavy machinery.

Topic VIII: Resonance:

Define resonance. Write its one example.

(3 times)

Ans: When the frequency of the applied force is equal to the natural frequency of simple harmonic oscillator, the periodic amplitude of the motion may become extraordinary large. This phenomenon is called resonance.

A swing is a good example of mechanical resonance. Tuning a radio is the example of electrical resonance.

49. Briefly give two phenomena in which resonance plays an important role.

i) Tuning a radio, we turn the knob to make the natural frequency of the electric circuit of receiver equal to the transmission frequency of the radio station. When the two frequencies match, energy absorption is maximum and this is the only station we hear.

ii) Food can be easily cooked in a microwave oven. The waves produced in this type of oven have a frequency of 2450 MHz. At this frequency the waves are absorbed due to resonance by water and fat molecules in the food.

Why soldiers are advised to break their steps when marching on a bridge? 50.

The column of soldiers, while marching on a bridge of long span is advised to Ans: break their steps. Because their rhythmic march might set up oscillation of dangerously large amplitude in the bridge structure.

How cooking of food is possible in micro-wave oven? (8 Times) 51. How does resonance plays an important role in working of microwave oven?

OR

Discuss the heating of food in microwave oven by resonance. Why waves of 2450 MHz frequency are necessary for heating and cooking of OR OR

food in microwave oven.

Food can be easily cooked in a microwave oven. The waves produced in this type Ans: of oven have a frequency of 2450 MHz. At this frequency the waves are absorbed due to resonance by water and fat molecules in the food.

Write and explain electrical application of resonance. 52.

(2 times)

OR How a particular station is tuned in radio?

Tuning of a radio is the best example of electrical resonance. When we turn the Ans: knob of a radio, to tune a station, we are changing the natural frequency of electrical circuit of receiver, to make it equal to the transmission frequency of the radio station. When the two frequencies match, energy absorption is maximum and this is the only station we hear.

53. Describe some common phenomena in which resonance plays an important (10 Times)

Ans: Following are some common phenomena in which resonance plays an important role.

■Tuning of a radio

It is a good example of electrical resonance. For tuning, we turn the knob of a radio which changes the natural frequency of electrical circuit of receiver until it becomes equal to the frequency of the transmitter. So resonance is produced and energy absorption is maximum. Hence a station is tuned and we can hear the transmission of desired station.

ii) Microwave oven

The waves produced in this type of oven have a wavelength of 12cm at a frequency of 2450 MHz at this frequency the waves are absorbed due to resonance by water and fat molecules in the food resulting in efficient and evenly heating and cooking of food.

How the phenomenon of resonance is produced? 54. OR

Describe the condition under which a vibrating body resonates with another body. When the frequency of the applied force is equal to the natural frequency of Ans: simple harmonic oscillator, the periodic amplitude of the motion may become

extraordinary large. This phenomenon is called resonance.

A swing is a good example of mechanical resonance. I.

Tuning a radio is the example of electrical resonance. ..II.

Explain relation between total energy, potential energy and kinetic energy for 55. a body oscillating with SHM. OR -

State the total energy of the vibrating mass and spring is constant.

For a body executing SHM, total energy is the sum of K.E and P.E which remains conserved during the motion in the absence of frictional forces, the K.E and P.E are interchanged continuously from one form to another. At mean position, the energy is totally kinetic i.e. K.E is maximum but P.E. = 0. At extreme positions, the

K.E is completely changed into P.E. In between, it is partly K.E and partially P.E. Write one advantage and one disadvantage of resonance. 56. Ans:

Advantage: A swing is a god example of mechanical resonance. If a series of regular pushes are given to the swing, its motion can be built up enormously. Disadvantage: The rhythmic march of column of soldiers on a bridge of long span might set up oscillations of dangerously large amplitude in the bridge structure. Bridge can be collapsed due to violent resonance oscillations. They are advised

How does resonance play role in heating and cooking food? 57.

The waves produced in microwave oven are absorbed due to resonance by Ans: water and fat molecules in the food, heating them up and so cooking the food. Microwaves have a wavelength of 12 cm at a frequency of 2450 MHz.

Topic IX: Damped Oscillations:

What are damped oscillations? Give some of its applications, (3 times) 58. The oscillations in which the amplitude decreases steadily with time are called Ans: damped oscillations.

For example '

The shock absorber of a car i.

il. Motion of any microscopic system

Differentiate between damped oscillation and undamped oscillations. (2 times)

Ans: Damped oscillations: The oscillations in which the amplitude decreases steadily with time are called damped oscillations.

For example, shock absorber of a car and motion of any microscopic system.

<u>Undamped oscillations:</u> The oscillations in which the amplitude remains same with time are called undamped oscillations. For example, oscillations in an ideal simple pendulum.

60. If a heavy and light masses of same size are set into vibration, which of them will stop first?

Ans: Light mass will stop first.

The damping effect for the light mass due to air resistance is much greater than the heavy mass. Therefore, it will stop first.

61. What is sharpness of resonance?

Ans: The amplitude as well as its sharpness, both depend upon the damping. Smaller the damping, greater will be the amplitude and more sharp will be the resonance.

62. What is damping and give its one application.

Ans: Damping is the process whereby energy is dissipated from the oscillating system. The amplitude of oscillation decreases steadly with time.

Application:

Shark absorber of a car provide a damping force to prevent excessive oscillations.

63. Differentiate between Resonance and Damping.

Ans: Resonance occurs when the frequency of the applied force is equal to the natural frequency of oscillator, the amplitude of the motion may become extraordinary large.

At resonance, the transfer of energy is maximum. Damping is the process whereby energy is dissipated from the oscillating system.

Damping is a process in which amplitude of oscillation of the oscillator decreases steadily with the time.

2021

64. If equation for simple harmonic motion is $x = 10 \sin(\pi/6)t$. Then calculate the instantaneous displacement after 3 Seconds?

Ans: Given that

$$x = 10 \sin\left(\frac{\pi}{6}\right) t$$

Putting t = 3 s

$$x = 10 \sin\left(\frac{\pi}{6}\right)3$$

$$x = 10 \sin\left(\frac{\pi}{2}\right)$$

$$x = 10 (1)$$

65. What is simple pendulum? Write down its formula for time period.

Ans:

A simple pendulum consists of a mass m hanging from a string of length L and fixed at a pivot point P. When displaced to an initial angle and released, the pendulum will swing back and forth with periodic motion.

The formula for time period of a simple pendulum is;

$$T = 2\pi \sqrt{\frac{\ell}{g}}$$

66. A block weighing 4.0 kg extends a spring by 0.16 m from its unstretched position. The block is removed and a 0.50 kg body is hung from the same spring. If the spring is now stretched and then released, what is the period of vibration?

Ans:

mass of first block = $m_1 = 4 \text{ kg}$ elongation = x = 0.16 mmass of second block = $m_2 = 0.5 \text{ kg}$ Time Period = T = ?

By Hook's law

F = kx or $k = \frac{F}{x} = \frac{m_1 g}{x} = \frac{4 \times 9.8}{0.16} = 245 \text{ Nm}^{-1}$

As

 $T = 2\pi \sqrt{\frac{m_2}{k}} = 2 \times 3.14 \times \sqrt{\frac{0.5}{245}} = 0.28 s$

67. Define simple pendulum and find the frequency of second pendulum.

Ans: A simple pendulum consists of a mass m hanging from a string of length L and fixed at a pivot point P. When displaced to an initial angle and released, the pendulum will swing back and forth with periodic motion. As the time period of second pendulum is 2 second. Then its frequency is calculated by:

$$f = \frac{1}{T} = \frac{1}{2} = 0.5 \ Hz$$

LONG QUESTIONS OF CHAPTER-7 IN ALL PUNJAB BOARDS 2011-2021

Topic I: Simple Harmonic Motion:

- 1. Define simple harmonic motion. Discuss motion of projection of particle moving along the circle. Show that this motion is simple harmonic. (2 Times)
- 2. Define simple harmonic motion. Prove that projection of particle moving in a circle, on vertical diameter is a SHM.
- 3. A particle moving along a circle then its projection on the diameter of the circle executing.

 SHm. Derive the relation for velocity and acceleration of SHM.

 (2 Times)

Topic III: Horizontal Mass Spring System:

- 4. Define Simple Harmonic Motion. Show that the body of Mass "m" attached to the spring performs Simple Harmonic Motion.
- 5. Discuss the motion of horizontal mass spring system and also derive formula for time period, displacement and velocity.

 (2 Times)

Topic IV: Simple Pendulum:

- 6. What is simple pendulum? Derive an expression for its time period and frequency of pendulum.
- 7. What is Simple Pendulum? Show that its motion is S.H.M. Derive an expression for its time period.
- 8. Define simple pendulum. Prove that the oscillation of simple pendulum is simple harmonic otion. Derive formula for its time period.

 9. Define simple pendulum. Derive the oversesion (3 Times)
- 9. Define simple pendulum. Derive the expression for its time period.

Topic V: Energy Conservation in Simple Harmonic Motion:

- 10. Define simple harmonic motion. Prove that energy is conserved for a body executing simple harmonic motion.
- 11. Define SHM. Prove that total energy remains conserved in mass-spring system, oscillating with SHM.

 (3 Times)
- 12. Show that the total energy of the vibrating mass and spring is constant. (3 Times)

NUMERICAL PROBLEMS OF CHAPTER-7 IN ALL PUNJAB BOARDS 2011-2021

Topic I: Simple Harmonic Motion:

Find amplitude, frequency and time period by considering the wave

equation

 $x = 0.25 \cos(\pi/8)t$

Sol:

Given that

$$x = 0.25 \cos\left(\frac{\pi}{n}\right)t$$

As we know that

$$x = x_0 \cos \omega t$$

Comparing these two equations, we get

$$x_0 = 0.25m$$

$$\omega = \frac{\pi}{8}$$

$$2 \pi f = \frac{\pi}{8}$$

$$f = \frac{1}{2 \times 8}$$

$$f = \frac{1}{16} Hz$$

$$T = \frac{1}{f}$$

$$T = \frac{1}{1/16}$$

Since

Topic IV: Horizontal Mass Spring System:

2. A block of mass 4.0 kg is dropped from a height of 0.80 m onto a spring constant k = 1960 N/m. Find the maximum distance through which the spring will be compressed. (14 Times)

Sol:

Given that

mass of the block =
$$m = 4 kg$$

height = $h = 0.8 m$
acceleration due to gravity = $g = 9.8 ms^{-2}$
spring constant = $k = 1960 N/m$
maximum distance = $x_0 = ?$

Now

$$P.E. = \frac{1}{2}kx_0^2$$

$$mgh = \frac{1}{2}kx_0^2$$

$$x_0^2 = \frac{2mgh}{k}$$

$$x_0^2 = \frac{2(4)(9.8)(0.8)}{1960}$$

$$x_0^2 = 0.032$$

$$x_0 = 0.18 m$$

3. A 100 g body hung on a spring elongates the spring by 4.0 cm. When a certain object is hung on the spring and set vibrating, its period is 0.568 s. What is the mass of the object pulling the spring? (3 Times)

Sol:

$$m = 100g = \frac{100}{1000} = 0.1kg$$
$$x = 4.0cm = \frac{4}{100} = 0.04m$$
$$T = 0.568s$$
$$m' = ?$$

$$F = kx , also F = w = mg$$

$$Thus kx = mg$$

$$or k = \frac{mg}{x}$$

$$k = \frac{0.1 \times 9.8}{0.04}$$

$$k = 24.5 \frac{N}{m}$$

$$Now T = 2\pi \sqrt{\frac{m'}{k}}$$

$$T^2 = 4\pi^2 \left(\frac{m'}{k}\right)$$

$$m' = \frac{KT^2}{4\pi^2}$$

$$m' = \frac{24.5 \times (0.568)^2}{4 \times (3.14)^2}$$

$$m' = 0.200kg$$

$$m' = 200gm$$

An 8.0 Kg body excustes SHM with amplitude 30 cm. The restoring force is 60 N when the displacement is 30 cm. Find period and the speed when displacement is 12 cm.

Sol:

$$m = 8.0kg$$

 $x_0 = 30cm = 0.30m$
 $F = 60N$
 $x = 30cm = 0.30m$
 $T = ?$
 $V = ?$
 $x = 12cm = 0.12m$

As

$$F = kx_0$$

$$k = \frac{F}{x_0}$$

$$k = \frac{60}{0.30}$$

$$k = 200 Nm^{-1}$$

Since

$$T = 2\pi \sqrt{\frac{m}{k}}$$

$$T = 2 \times 3.14 \sqrt{\frac{8}{200}}$$

$$T = 6.28 \times \sqrt{0.04}$$

$$T = 6.28 \times 0.2$$

$$T = 1.256 \text{ s}$$

T = 1.3s

Topic IV: Simple Pendulum:

A simple pendulum is 50 cm long. What will be its frequency of vibration at a place where $g = 9.8 ms^{-2}$. (7 Times)

sol: Given that

length of simple pendulum = l = 50 cm = 0.5 macceleration due to gravity = $g = 9.8 ms^{-2}$ frequency of simple pendulum = f = ?Time period of simple pendulum is

$$T = 2\pi \sqrt{\frac{l}{g}}$$

$$T = 2(3.14) \sqrt{\frac{0.5}{9.8}}$$

$$T = 1.42 \text{ s}$$

And

Sol:

$$f = \frac{1}{T}$$

$$f = \frac{1}{1.41}$$

$$f = 0.70 \text{ Hz}$$

6. What should be the length of a simple pendulum whose period is 1.0 second at a place where g = 9.8ms⁻². What is the frequency of such a pendulum? (3 Times)

T = 1.0 S
g = 9.8 ms⁻²

$$\ell$$
 = ?
f = ?
As . T = $2\pi \sqrt{\ell/g}$

Squaring on both sides

$$T^{2} = 4 \pi^{2} \frac{f}{g}$$

$$\ell = \frac{gT^{2}}{4\pi^{2}}$$

$$\ell = \frac{9.8 \times (1.0)^{2}}{4 \cdot (3.14)^{2}}$$

$$\ell = 0.25m$$

$$f = \frac{1}{T}$$

$$f = \frac{1}{1.0} = 1 \text{ Hz}$$

7. What should be the length of a simple pendulum whose period is 2s at a place where g = 9.8 m/s² ? What is the frequency of such a pendulum?

Ans:

$$T = 2 s$$

$$g = 9.8 m/s^{2}$$

$$l = ?$$

$$f = ?$$
Time period. $T = 2\pi \sqrt{l/g}$
Squaring both sides
$$T^{2} = 4\pi^{2} \frac{l}{g}$$

$$l = \frac{gT^{2}}{4\pi^{2}}$$

$$l = \frac{9.8 (2)^{2}}{4 (3.14)^{2}}$$

$$l = 1 m \text{ or } 100 \text{ cm}$$

Frequency $f=\frac{1}{T}=\frac{1}{2}=0.5~Hz$ A simple pendulum is 80 cm long what will be its period and frequency at a 8. place where $g = 9.8 ms^{-2}$

Sol:
$$l = 80cm = 0.80m$$

 $g = 9.8m/s$
 $T = ?$
 $f = ?$
For a simple pendulum
 $T = 2\pi\sqrt{l/g}$
 $= 2(3.14)\sqrt{\frac{0.80}{9.8}}$

=
$$(6.28) \times (0.286)$$

= $1.80s$
We know that

$$f = \frac{1}{T} \\
= \frac{1}{1.80} \\
= 0.56 \text{ Hz}$$

2021

A spring, whose spring constant is 80 Nm-1 vertically supports a mass of 1.0 kg 9. in the rest position. Find the distance by which the mass must be pulled down, so that on being released, it may pass the mean position with a velocity of 1.0 ms-1.

Sol:

spring constant = k = 80 N/m
mass = m = 1 kg
maximum speed =
$$v_0$$
 = 1 ms⁻¹
amplitude = x_0 = ?

$$v_0 = x_0 \sqrt{\frac{k}{m}} \quad \text{or } x_0 = \frac{v_0}{\sqrt{\frac{k}{m}}}$$

$$x_0 = v_0 \sqrt{\frac{m}{k}} = 1 \times \sqrt{\frac{1}{80}} = 0.11 \text{ m}.$$

OBJECTIVES (MCQ'S) OF CHAPTER-8 IN ALL PUNJAB BOARD 2011-2021

ropic I: Waves:		the same	100
Longitudinal way	ves did not exhibit: (B) refraction		(6 Times)
(A) reflection	(B) refraction	(C) diffraction	(D) polarization
of waves is:	ough the medium in	one sec with speed o	of 10m/s. The wavelength
(A) 1 m	(B) 10 m	(C) 20 m	(D) 100 m
3. Distance between	en two consecutive no	des is:	(9 Times)
	(B) $\frac{\lambda}{}$	/α λ	(5) 54
(A) \(\lambda\)	$\frac{1}{4}$	(C) $\frac{\lambda}{2}$	(D) 2λ
mediar	and longitudinal way	es can be setup in w	hich one of the following
(A) Solid	(B) Liquid	(C) Gas	(D) Plasma
system:	magnetic waves are	used as medium in	satellite communication
(A) Microwaves	(B) Radio waves	(C) Infrared waves	(D) Ultraviolet waves
6. Electromagneti	c wave travel in tree c	nace with velocity on	ral to
(A) 3×10 ms	(B) $3 \times 10^{6} m s^{-1}$	(C) 3 × 10 m s ⁻¹	(D) 2 × 109
/. Appropriate ra	nge of audible frequer	icles for vounger ners	on is:
(A) 20-200 HZ	(B) 20-2000 Hz	(C) 20-20000 Hz	(D) 2000 20000 Hz
8. The number of	anti-node between tv	vo nodes is:	(2 Times)
IAII	IRI)	1017	/=\
9. The frequency	of waves produce in n	nicrowave oven is:	
(A) 1450 MHz	(B) 1650 MHz ween crest and trough (B) λ/2	(C) 2450 MHz	(D) 2850 MHz
10. Distance bety	ween crest and trough	is:	(2 Times)
(A) λ	(B) λ/2	(C) λ/4	(D) 2)
TE THE EXAMPLE	of mechanical wave is		(2 Times)
(A) Water and air	waves	(B) Radio waves	
(C) Infrared wave	es .	(D) Ultraviolet was	ves
12. The portion	es of wave above mean le	vel is called:	40
(A) Node	(B) Anti-node	(C) Crest	(D) Trough
13. The distance	between two consecu	tive anti-nodes is: 💉	a tagin i
(A) A	(B) ¹ / ₄	(C) 2 λ	$(D)\frac{\lambda}{2}$
	between node and ne	xt antinode is:	(2 Times)
(A) A	(B) 2 λ	$(C)\frac{\lambda}{2}$	$(D)\frac{\lambda}{4}$
15. The correct	voletlen ier	2	4
(A) V- 10	V	(0)	
$(A) V = \lambda T$	(B) $\lambda = \frac{1}{\tau}$	(C) $V = \frac{c}{f}$	(D) $v = f \lambda$
interference	mplitude of a wave inc	(C) Keflection	(D) Polarization
increases by	4 times e covered by wave in 1	(D) Decrease to h	
(a) Wavelength	(b) wave numberingth corresponds to:	r (c) frequency	(d) wave speed
(a) () _e	(b) 90°		(d) 360°
20. longituding	I waves are also know	n as:	
(a) stationary v (c) compression	vaves	(b) transverse wa (d) electromagne	

	17.4		
21. Tuning fork is			the state of the state of
(a) Energy	(b) heat	(c) light veiling in opposite direct	(d) sound
22. Two waves of	equal frequency tra	velling in opposite direct	ions produce:
	The state of the s	The water and the state of	(2 Times).
(A) Interference	(B) Stationary w	aves (C) Beats	(D) Doppler effect
23. The distance b	etween 1st node and	d 4th antinode is:	
$\frac{7}{2}\lambda$	λ	- Artista Company	
	5-7	$(c)^{13\frac{\lambda}{4}}$	11-
(A) 4	(B) 4	(c) 4	(D) 4
24. When sound v	waves enter in differ	ent medium, the quantity	y that remains
unchanged is:			
	(B) Speed	(C) Frequency	(D) Wavelength
	ound depends upon.		the state of the state of
(A) Intensity of so		(B) Wavelength of s	ound
	ound		
		wo consecutive antinode:	
(A) One	(D) Two	(C) Three	(D) Four
(A) One	(B) IWO	(C) Three	(D) Four
27. If 332 waves p	ass through a mediu	ım in one second with sp	eed of 332 ms then
wavelengt	n will be:	to the work revenuence	· PARENT No Copy
(A) 7m	(B) 332 m	(C) 664 m	(D) 1 m
28. Longitudinal v	vaves of frequencies	less than 20Hz are know	n as:
(A) Infra Sound	(B) Ultra Sound	(C) Super Sonics	(D) Audible Sound
29. Crests and tro	ughs are formed in:	• 5	
(A) Longitudinal w	aves	(B) Transvers waves	
(C) Stationary way	es	(D) Compressional	waves
30. The wave leng	th of a transverse w	(D) Compressional vave travelling with speed	"V" having
frequency	(Ip)	The second of the second of the	zer origina i Rombia avil i
(A) f/v		(6)/ 6	(D) 619
		(C) v/f	(D) f/v^2
(A) 20 20000 H	ge of hearing of cats	is:	01
(A) 20 - 20000 HZ	(B) 10 - 10000 H	(C) 60 – 20000 Hz	(D)60 - 70000 Hz
32. The waves use	d in rander speed tr		
(A) Longitudinal	(B) Sound waves	(C) Microwaves	(D) Matter waves
33. The light from	stars can be reflecte	d by their:	Commence to 1
(A) Mass	(B) Distance	(C) Radius	(D)Gravity
34. The distance b	etween a compressi	on and its adjacent rarefa	ction is:
λ		west to the first terms of the	and was given by a filter of
(4) 2		0	31 A Sec. 20
(A) -	(B) λ	(C) $\lambda 2$	(D) 4
Topic II: Speed o	of Sound in Air:		
	" for diatomic gas is	6	*
			restant to the state of
(A) 1.67	(B) 1.40	(C) 1.29	(D) infinity
	ound in air depends	upon: 🔍	
(A) Temperature	(B) Humidity	(C) Density	(D) All of these
37. The speed of so	ound has maximum	value in:	(D) All of these
(A) Oxygen	(B) Air		
		(C) Hydrogen	(D) Helium
38. Sound waves ca	annot be:		(2 Times)
(A) Reflected	(B) Refracted	(C) Polarized	(D) Diffracted
39. If the speed of :	sound in air at a give	en pressure is V, then by	increasing the pressure
to double, the r	new speed becomes	1 194	(2 Times)
A) 0.5V	(B) V	(C) 2V	
No Volenia - f			(D) 4V
	nd in free space at 0°	1. 2 2.10	(6 Times)
A) 332 ms	(B) 224 ms ⁻¹	(C) 76 ms ⁻¹	(D) 0
1. Lanlace express	ion for the speed of	sound in a gas is:	(3 Times)
			Carpory Sept 101 Feb. 2
P	(B) $v = \frac{P}{2}$	(C) $v = \sqrt{\frac{\gamma P}{C}}$	(D) $v = \frac{\gamma P}{r}$
$v = \sqrt{\frac{P}{a}}$	(D) v = _	(C) - V P	(0) 1 - 0
V / /			

```
42. Speed of sound at t°C is given as:
v_t = v_o + 0.61 t (B) v_t = v_o - 0.61 t (C) v_t = v_o + 61 t (D) v_t = v_o - 61 t
3. Sound waves can travel only through:
(A) Vacuum
                                              (B) Ether
(C) Material medium
                                              (D) Non metals
44. Newton's formula for velocity of sound in gas/air is related as under:
                                              (C)V = \sqrt{P/\rho}
                                                                               (D) v = P/\rho
45. According to Newton sound travels in air under conditions of:
(A) Adiabatic
                      (B) Isothermal
                                              (C) Isobaric
                                                                       (D) Isochoric
46. The apparent change in the pitch of sound due to relative motion is called:
(A) Carnot theorem (B) Interference
                                              (C) Doppler Effect
                                                                       (D) Beats.
47. According to Newton's formula the speed of sound in air at STP is:
(A) 332 ms<sup>-1</sup>
                      (B) 340 ms<sup>-1</sup>
                                              (C) 350 ms
                                                                      (D) 280 ms<sup>-1</sup>
48. Speed of sound in copper Is:
(A) 38000 m s<sup>-1</sup>
                       (B) 3600 m s<sup>-1</sup>
                                               (C) 3500 m s<sup>-1</sup>
                                                                       (D) 3400 m s<sup>-1</sup>
49. Sound waves in air are:
(A) Longitudinal waves (B) Transverse waves (C) Matter waves (D) Electromagnetic waves
50. The speed of sound in air is 340 m/s. If the pressure of air is doubled then the
   speed becomes.
(A) Double
                       (B) Half
                                               (C) Four times
                                                                       (D) Remains same
 51. Velocity of sound in vacuum is:
 (A) 332 ms<sup>-1</sup>
                       (B) 320 ms<sup>-1</sup>
                                               (C) Zero
                                                                       (D) 224 ms<sup>-1</sup>
 52. The velocity of sound is greatest in:
 (A) Aluminium
                       (B) Air
                                               (C) Iron
                                                                       (D) Water
 53. Speed of sound in aluminium at 20°C is:
                                                                              (2 Times)
 (A) 3600 m/s
                       (B) 5100 m/s
                                                (C) 5130 m/s
                                                                       (D) 5500 m/s
 54. If the pressure of a gas is doubled, then speed of sound is:
                                                                              (3 times)
 (a) doubled
                       (b) become half (c) not affected (d) increases by four times
 55. Sound travels faster in:
 (a) CO,
                        (b) H_{\gamma}
                                               (c) O_{\gamma}
 56. The speed of sound is greater in solids than in gases due to their high.
 (A) Temperature
                        (B) Pressure
                                               (C) Denisty
                                                                       (D) Elasticity
 57. The Velocity of sound is maximum at 20° C in:
 (A) Lead
                                                (C) Glass
                                                                       (D) Iron
                        (B) Copper
 58. Error in calculation of Newton's formula for speed of sound is about.
                                                (C) 16%
                                                                       (D) 26%
                        (B) 10%
 59. In which medium the speed of sound is greater?
                                                (C) Water
 (A) Oxygen
                                                                       (D) Copper
                        (B) Air
 Topic III: Effect if Variation of Pressure, Density and Temperature on the
 speed of Sound in a Gas:
 60. For each degree Celsius rise in temperature of gas, the speed of sound through it
                                                                              (7 Times)
    increase by:
                                                (C) 61 ms-1
                                                                       (D) 6.1 \, ms^{-1}
                        (B) 0.61 \, ms^{-1}
 (A) 0.60 ms^{-1}
 61. Which of the following does not have any effect on the speed of sound in gasses?
                                                                              (6 Times)
                        (B) Density
 (A) Temperature
 62. The louder the sound, the greater will be its:
                                                (C) Speed
                                                                       (D) Frequency
                        (B) Wavelength
 (A) Amplitude
 63. With increase of temperature, speed of sound: (2 Times)
                                                                       (D) Increases
 (A) Remain constant (B) Becomes zero
 64. What is the value of constant \beta in the expression v_i = v_o(1+\beta t):
                                                (C) 0.61
                                                                       (D) 1.42
                         (B) 1/273
 (A) 273
```

65. The louder the sound, the greater wi	Il be its.	(D) Wavelength
(A) Speed (B) Frequency	(C) Amplitude	(D) Workingth
Topic V: Interference:		
66. Two waves can interfere only if they	have:	
(A) Phase coherence	(B) same velocity	
(C) Different frequencies	(D) Different wavele	engths
67. Two waves of same frequency and m	oving in the same dire	ction produces:
(A) Interference (B) Diffraction	(C) Beats	(D) Stationary Waves
68. The path difference for constructive	interference should be	:
(a) $\frac{\lambda}{2}$ (b) $\frac{5\lambda}{2}$	(c) m λ	$(d)\frac{3\lambda}{2}$
2	(0) 111 /	\"' 2
Topic VI: Beats:		
69. Beats are used to find:		
(A) Frequency (B) wavelength		
70. Beats detectable easily up to frequen	icy difference between	two sound is:
		(6 Times)
(A) 2 Hz (B) 6 Hz	(C) 10 Hz	(D) 32 Hz
71. For same mass and length if tension of	of a vibrating string is i	ncreased four times the
speed of wave increased by:		
(A) 6 times (B) 4 times	(C) 8 times	(D) 2 times
72. Tuning a radio is example of:		
(A) Mechanical resonance	(B) Light wave reson	ance
(C) Electrical resonance	(D) Physical resonan	ce
73. Periodic alternations of sound bets called:	ween maximum and i	minimum loudness are
canca.		1000
(A) Interference (B) Resonance	(C) Doppler's Effect	(D) Beats
74. Two tuning forks of frequencies 20 number of beats per second is:	40Hz and 243Hz are	sounded together, the
(A) Zero (B) 4		.6
75. The basic principle of beats is:	(C) 3	(D) 2
(a) Interference (b) differential	m (a) == (1	6
76. Two tuning forks of frequencies 26	O Ha and are	(d) refraction
76. Two tuning forks of frequencies 26 number of beats per second is:	o nz and 256 Hz are	sounded together, the
(a) 4 (b) 25g	~~	
77. When two notes of frequencies f_1 and If $f_1 > f_2$ what will be the beat frequen		(d) 516
If $f_1 > f_2$ what will be the beat frequen	cv?	er, beats are formed.
1000		
(A) $f_1 + f_2$ (B) $\frac{1}{2}(f_1 + f_2)$	(C) f ₁ - f ₂	(D) $\frac{1}{2}(f_1 - f_2)$
Topic VII: Law of Reflection:	The Commence of	$(0)^{\frac{1}{2}(j_1-j_2)}$
78. Radar system is an application of:	8	and the same of th
(A) Interference (B) beats	140	(5 Times)
Topic VIII: Stationary Waves:	(C) stationary waves	(D) Doppler effect
79 The wavelength of the few l	NO.	(-/
79. The wavelength of the fundamental r	node of vibration of a	nine closed at one end
		(3 Times)
(A) $\frac{\ell}{2}$ (B) ℓ	(C) 2 <i>t</i>	(2 times)
2		(D) 40
80. The time period of a wave is 0.2 s. its	frequency will be:	
MILLS INTILE		(D) F1
81. In stationary wave one mode of vibrat (A) λ (B) $\lambda/2$	ion of the string having	length / la equal to:
	(C) $\lambda/4$	(D) 2\(\lambda\)
82. At the open end of an organ pipe:		
(A) Nodes are formed	(B) Anti-nodes are for	med
C) Nodes or anti-nodes are formed	(D) Neither node or a	nti-node is formed

3. If the organ pipe i	s open at both ends	the frequency of funda	mental harmonic is: (4 Times)
$v = \frac{v}{v}$	(B) $f_i = \frac{v}{}$	(C) $f_1 = \frac{4\ell}{V}$	100 6 20
(A) Ji - 2ℓ	40	(C) $J_1 = \frac{1}{v}$	(D) $f_1 = \frac{1}{v}$
Make Alli.	el le l	loops, then the waveler	(3 Times)
$(A) \lambda_n = \frac{n}{2} \ell$	(B) $\lambda_n = \frac{2}{n}\ell$	(C) $\lambda_n = \frac{2n}{\ell}$	(D) $\lambda_n = \frac{\ell}{2\pi}$
et which one is con	rect relation for one	and closed wine.	
$(A) \lambda_n = 2U/n$	(B) $\lambda_n = 4\ell/n$	(C) $\lambda_{i} = nv/l$	$(D) \lambda = m/4f$
KE WAVEIGHEUH OF U	ie iunnamentai me	do of'L	
(A) 2l	(B) ℓ	(C) 4/	(D) 1/2#
87. For standing wa	ave in a stretched	(C) 4ℓ string if $\lambda = \ell$ (length of	string) the number of
		S W - c (icilgan of	string, the number of
(A) 1	(B) 2	(C) 3	(D) 4
88. In stationary wa	ives the points which	h always remain at rest a	re·
(A) NUCCS	(b) antinodes	(C) crost.	101.
89. In a Stationary \	vouc, the velocity o	T TOO DOMERICIO OF The made	ia.
(A) Maximum	(D) IVIINIMUM	(C) Zero	IDI Constant
Joi il tile telision of	i a stretched string i	s made tour times then the	an unlantar of
hy nemana same	(b) is ligived	III) Recomes twice	(D) Daggers as 4 4'-
(A) Wavelength	(B) Frequency	posed, which can change	X
92. The wavelength	h of fundamental me	(C) Velocity ode of vibration of an ope	(D) Amplitude
(a) 4 L	(b) 2 <i>l</i>	oue of vibration of an ope	
	(U) 2 t	(c) <i>t</i>	$(d)\frac{1}{4}l$
iungamentai n	ote is.	ne end and closed at othe	er, the frequency of
$f_1 = \frac{\mathbf{v}}{4!}$	$f_1 = \frac{4l}{v}$ (B) fing 4m long and it h	$f_1 = \frac{v}{v}$	$f_1 = \frac{2l}{v}$
(A) 41	(B) v	(c) 2 <i>l</i>	(D) (D)
length is	ring 4m long and it h	as 4 loops of stationary w	aves, then the wave
(A) 1m	(B) 2 m	(C) 3m	(D) 4m
frequency 120	vave is established ir Hz. Its fundamenta	a string which vibrates in frequency is:	four segments at a
(A) 15 Hz	(B) 30 Hz	(C) 60 Hz	(D) 480 Hz
96. When a trans	verse wave in incide	nt on rarer medium from	a denser medium, the
phase change	will be:		
(A) 90°	(B) 60°	(C) 180°	(D) 0°
Opic IX: Doop	ler Effect:	L	
97. Star moving a	way from the earth	shows:	(7 Times)
(A) Red shift	(B) Blue shift	(C) Doppler's shift	(D) Frequency shift
(A) Red shift	towards the earth s	(C) yellow shift	(D) green shift
wo ned shift	(B) Dide Silic	2018	(D) Breen suit
90 144	0		II from a start
source then relati	rver is moving away to ve velocity of the wave	om the source with velocity es and the observer is:	O from a stationary
(a) V + U _o	(b) V – U _o	(c) $\frac{V + U_o}{2}$	(d) zéro
	correct relation.		
	(b) $\frac{v_i}{v_i} = \frac{\rho_i}{\rho_i}$	(c) $\frac{v_t}{r} = \sqrt{\frac{\rho_t}{r}}$	(d) $\frac{v_i}{r} = \sqrt{\rho_0}$

101. The speed of sour	nd in air at 0 °C is 332 m	s ¹ . Then speed of sound	at 40 °C will be: (d) 332 ms ⁻¹
(a) 3/2 ms.	(b) 356.4 ms ⁻¹	(c) 346. 4 ms ⁻⁴	
length of stationary wa	ave is:	s. Then relation between	
(a) $l = \frac{3\lambda}{2}$	(b) $l = 3\lambda$	$(c) l = \frac{2\lambda}{2}$	(d) $\lambda = 3l$
103 The speed of	sound is greater in an	lid than gases due to t	heir high:
(A) density	(B) elasticity	(C) temperature	(D) oscillation
104. Waves produ	red in organ nines are	·	
(A) transverse station	nary waves	(B) longitudinal statio (D) Matter waves	nary waves
(C) Electromagnetic	waves	(D) Matter waves	an alaban
105. If the period of	wavemotion is 0.01 S	ec and wave speed is 1	.00ms - then
Euganoman - 5	!		
(A) 0.5 Hz	ve is: (B) 1 Hz	(C) 10 Hz	(D) 100 Hz
106. A bat finding	its correct location by	sending:	Sign and their sections
(A) Matter waves		(B) Ultrasonic waves	The same of the sa
(C) Infrasonic waves		(D) Electromagnetic v	vaves.
107. The distance	between two consecu		
(A) displacement	t (B) amplitude	(C) wave front	(D) wavelength
108 If a stretched	string is 2m, and it has	2 loops of stationary w	aves then wavelength
is:			half ritory of
(A) 4 m	(B) 3 m	(C) 2 m	(D) 1 m
109. In sonar we		19112991711	and the state of the
		(C) Radio waves	(D) Microwaves
	following Speed of Sou		(B) interovates
(A) Air		(C) Vaccum	(D) Stool
		ive is doubled the tens	
(A) 2	(B) 4		
	hotwoon two concor	(C) 8 Itive troughs is called:	(D) 6
(Δ)	(P) A III (C)	tive troughs is called:	one most Nosmo has na JPU
113 Displacement	(b) Amplitude (c) wa	velength (D) Wa	eve-front
113. In the stretch	ned string, it speed of	the wave is doubled, th	he tension will be:
(A) 2	(B) 4	(C) 8	(D) 6
114. Sound waves a			5
(A) electromagnetic		(B) Transverse waves	Con rebandation of
(C) Compressional w	aves	(D) Matter waves 💉	2 339-97
	2	019	
115. It becomes d	lifficult to recognize th	e beats when the diffe	the Estate outer Street
frequencies of to	wo sounds is more tha	e pears when the diffe	
(A) 10 Hz	(B) 20 Hz	(C) 30 Hz	(3 Times)
116. Increase in v	elocity of sound in air	nor dogree Colet	(D) 40 Hz
(A) 0.61 m/s	(B) 0.61 cm/s	(C) 0.61 de (C) 15:	(2 Times)
117. Speed of sou	ind in Hydrogen is high	(C) 0.61 dm/s ner than in Oxygen by t	(D) 0.61 km/s
(A) 4	(B) 6	(C)	limes:
	can not pass through	(C) 8	(D) 16
(A) Liquid	(B) Solids		
119. Two tuning for	orks of fraguency 364	(C) Air	(D) Vacuum
number of heats	por socond are	nz and 258 Hz are sou	(D) Vacuum nded together, the
(A) 3	(B) 2	(C) 261	(D) 258
120. The number	or beats produced per	sec. in two tuning for	ks is agreed to
(A) sum of two nega	Circias .	(D) Id(IO OF TWO free	uencies
(G) The frequency of	either of two tuning for	JIK.	The second secon
(D) the difference of	the frequencies of two	tuning forks	
121. The waves w	hich do not require an	y medium for their pr	Opposition and selleds
(A) Mechanical wave	es .	(B) matter waves	chagarion are called:
(C) electromagnetic		(D) longitudinal wave	
		wave	
	e sound, the greater \	will be its:	
(A) wavelength	e sound, the greater ((B) amplitude	(C) speed	(D) frequency

(D) 4 m

144.	The	stretched string of length 2 m	vibrates in 2 segments:	
	1 m		(C) 0.5 m	

	ANSWERS OF THE MULTIPLE CHOICE QUESTIONS													
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
. D .	Α	С	Α	Α	C	С	Α	С	В	·A	С	D	D	D
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
D	Α	D	С	С	D	В	Α	С	С	Α	D	A	В	C
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
D	С	D	Α	В	D	С	С	В	Α	·C	Α	С	С	В
46	47	48	49	50	51.	52	53	54	55	56	57	58	59	60
C.	D	В	, C	В	С	С	В	В	В	D	С	С	D	В
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
D	C	D	В	Α	Α	Α	С	Α	C	D	С	D	C	Α
76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
Α	С	D.	D	D	В	В	Α	В	В	C	В	Α	С	С
91	92	93	94	95	96	97	98	99	100	101	102	103	104	105
D	B.	Α	В	В	D	Α	В	В	D	В	Α	В	В	D
106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
D	D	С	В .	D	В	С	В	C	Α	Α	Α	D	Α	D
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135
C	В	D	В	Α	В	D	Α	С	Α	С	Α	Α	D	C
136	137	138	139	140	141	142	143	144			6.		11.0	ائب
_ D	A	В	C	D	D	В	D	В					4	

SHORT QUESTIONS OF CHAPTER-8 IN ALL PUNJAB BOARDS 2011-2021

Topic I: Waves:

Define mechanical and electromagnetic waves. Give examples of each.

Mechanical waves: The waves which require any medium for their propagation by the oscillation of material particles are called mechanical waves e.g., sound waves, water waves etc.

Electromagnetic waves: The waves which do not require any medium for their propagation are called electromagnetic waves. For example, visible light, radio waves, television signals, and x-rays.

Differentiate between longitudinal and transverse waves. 2. Ans:

Longitudinal waves: A traveling wave that causes the elements of the medium to move parallel to the direction of propagation is called a longitudinal wave. Transverse waves: A traveling wave that causes the elements of the disturbed medium to move perpendicular to the direction of propagation is called a transverse wave.

What features do longitudinal waves have in common with transverse waves? 3.

The common features are: Ans:

- i. Both are mechanical waves.
- Both transport energy from one place to another. · ii.
- iii. Both satisfy the equation. 4.

 $v = f\lambda$

What is progressive wave? Give the name of two progressive waves. (3 Times) A wave which transfer energy by moving away from the source of disturbance is Ans: called progressive wave. For example, longitudinal and transverse waves.

Why ultrasonic waves are preferred on radio waves for the use of undersea 5.

Ultrasonic is a high frequency sound wave. It is not a part of electromagnetic Ans: spectrum. Ultrasonic waves transmit energy from one place to another using elastic properties of matter. They are preferred on radio waves for the use of undersea communication because they can travel longer distances in water.

Explain the terms Crest, Trough, Node and Antinode. 6.

Crest: The portion of the wave above the mean level is called crest. Ans: Trough: The portion of the wave below the mean level is called trough. Nodes: The points of zero displacement in stationary waves are called nodes. Anti-nodes: The points of maximum displacement in stationary waves are called

Distance between the two consecutive nodes or anti-nodes is equal to $\frac{\lambda}{2}$ and distance between node and its neighboring anti-node is equal to $\frac{\Delta}{4}$.

Why can micro waves not detect under water objects? 7.

Microwaves are strongly absorbed by sea water within feet of their transmission. Ans: Ultrasonic is a high frequency sound wave. It is not a part of electromagnetic spectrum. They are preferred on micro waves for the use of undersea communication because they can travel longer distances in water.

Differentiate between travelling waves and stationary waves. 8.

A wave, which transfers energy by moving away from the source of disturbance, Ans: is called a travelling wave. The ripples produced in the water are the examples of travelling waves.

Two waves of equal frequency travelling in opposite direction produce stationary waves. In stationary waves energy cannot flow past the nodes and remains "standing" in the medium between nodes. Waves produced in a stretched string and air column are the examples of stationary waves.

9. What do you observe in the collective effect of dots in the form of a picture?

Ans: We observe that the picture is made up of many closely spaced dots? In case of mechanical waves, it is actually the effect of cooperative oscillations of a very large number of the particles of the medium through which the wave is passing.

Taking an example of periodic wave, prove that $V = f\lambda$. 10.

Let one end of a rope is fastened to a mass spring vibrator. As the mass vibrates Ans: up and down, a transverse periodic wave travelling along the length of rope is observed. We observe that the crest moves one wavelength λ in one period of oscillation T. The speed of crest or wave is therefore,

$$V = \frac{\text{distance moved}}{\text{corresponding time interval}} = \frac{\lambda}{T}$$

Where f is the frequency of wave. Thus we can write

 $V = f\lambda$.

Define transverse waves, give two examples. 11.

Transverse waves are those in which particles of the medium are displaced in a direction perpendicular to the direction of propagation of waves. Ans: Waves produced in a stretched string and ripples produced in water are good examples of transverse waves.

Topic II: Speed of Sound in Air: Why does sound travel faster in solids than in gases?

The speed of sound is

$$v = \sqrt{\frac{E}{\rho}}$$

Since the modulus of elasticity for solids is much greater than gases.

Problet > Proset

Hence, sound travel faster in solids than in gases. Explain why sound travels faster in warm air than in cold air?

The speed of sound varies inversely as the square root of density, i.e. 13. Ans:

With the increase in temperature, the volume increases and density decreases.

That's why sound travels faster in warm air than in cold air.

Speed of sound in air at 0 °C is 332 ms^{-1} . Find its speed 20 °C.

 $v_t = v_0 + 0.61t$ $v_{\rm r} = 332 + 0.61(20)$ $v_t = 332 + 12.2 = 344.2 \, ms^{-1}$

As the result of distant explosion an observer senses a ground tremor and then hears the explosions. Explain the time difference. (11 Times)

The waves produced by the explosion reach the observer quickly through the ground as compared to the sound waves reaching through the air. This is due to the reason that sound travels faster in solid than gases.

Find the temperature of air, if the velocity of sound is 340 ms⁻¹ at that

Ans:

Since Given that

 $v_t = v_o + 0.61t$ $v_t = 340 \, \text{ms}^{-1}$ v₀= 332 ms⁻¹ $v_t - v_o = 0.61t$ 340 - 332 = 0.61t8 = 0.61t

t = 13.1°C $t = 13.1 + 273 = 286.1 \,\mathrm{K}$

Speed of sound in air at 0°C is 332 ms⁻¹. Find its speed at 15°C.

 $t_1 = 0^{\circ}C = 273k$

t₂ = 15°C = (15 + 273)k = 288k

 $t = t_2 - t_1 = 288 - 273 = 15k$

Speed of sound waves is given by

 $V_t = V_0 + 0.61 t$ Vt = 332 + 0.61 (15)

 $V_t = 341.15 \text{ m/s}$ 18.

What are the factors on which speed of sound in air depends? (3 Times) (i) Speed of sound is inversely proportional to the square root of densities of gases. Ans:

(ii) Speed of sound increases with the increase in temperature.

(iii) Speed of sound is not affected by a variation in the pressure of the gas.

Why sound travels faster in hydrogen than in oxygen? Ans:

The speed is inversely proportional to the square root of the density of gas which shows that smaller the density greater is the speed. That is why sound travels

How the speed of sound changes with the density of the medium?

The speed of sound is Inversely proportional to the

square root of density of medium provided that r & p are kept constant. As we know PV' = Constant. What do you know about in γ in this relation? In this relation γ is a constant for the medium. For air its value is 1.40. γ is defined as the ratio of the molar specific heat of the gas at constant pressure to molar specific heat at constant volume

$$\gamma = \frac{C_p}{C_m}$$

Topic: III Speed of Sound in a Gas:

What is effect of pressure on the speed of sound in gases?

Speed of sound in gases is given by v=

Since density of a gas is proportional to the pressure, the speed of sound is not affected by the variation in the pressure of the gas.

Describe the effect of density on the speed of sound in gases. 23.

Ans: Speed of sound in air is

The speed is inversely proportional to the square root of their densities.

So, the speed of sound is less in a denser medium and vice versa.

What is effect of pressure and temperature on the speed of sound? (6 Times) 24.

Speed of sound in gases is given by Ans:

Effect of pressure: Since density of a gas is proportional to the pressure, the speed of sound is not affected by the variation in the pressure of the gas. Effect of temperature: Whereas when a gas is heated at constant pressure then its volume is increased and density is decreased, so the speed of sound is increased with rise in temperature and vice versa. $v_t = v_o + 0.61 \, \mathrm{t}$ One degree Celsius rise in temperature produces approximately 0.61m/s increase in the speed of sound.

What happens when a jet plane like a concorde flles faster than the speed of (3 Times)

A conical surface of concentrated sound energy sweeps over the ground as a Ans: supersonic plane passes overhead. It is known as sonic boom.

Topic IV: Principle of Superposition:

State the principle of superposition.

(6 Times)

Ans: It states that

If the particle of the medium is simultaneously acted upon by n waves such that its displacement due to each of the individual n waves be $y_1, y_2, ..., y_n$, then the resultant displacement of the particle, under the simultaneous action of these nwaves is algebraic sum of all displacement. $y = y_1 + y_2 + \cdots + y_n$

Topic V: Interference:

27. Differentiate between constructive and destructive interference.

Write conditions for constructive and destructive interference. (6 times) OR

Constructive Interference: Whenever the path difference between the two waves is an integral multiple of wavelength, then the both waves reinforce each other. This effect is called constructive interference.

<u>Destructive interference:</u> Whenever the path difference between the two waves is an odd integral multiple of half of wavelength, then the both waves cancel each other's effect. This effect is called destructive interference.

$$\Delta S = (2n+1)\frac{\lambda}{2}$$

28. What are the conditions for interference of two sound waves?

Ans: Superposition of two waves having same frequency and travelling in the same direction results in interference.

Condition for constructive interference:

Path difference

 $\Delta S = n\lambda$

Condition for destructive interference:

Path difference

 $\Delta S = (2n+1)\frac{\lambda}{2}$

Where $n = 0, \pm 1, \pm 2, \pm 3,$

Topic VI: Beats:

29. Explain the term "Beats".

Ans: Two waves that are travelling in the same direction with a slight difference in frequencies will produce beats. Number of beats per second is equal to the difference in frequencies.

30. How are beats useful in tuning musical instruments? (20 Times)

Ans: Beats are used in tuning musical instruments. One can use beats to tune a string of musical instrument such as piano by beating a note against a note of known frequency. The string is then adjusted to the desired frequency by tightening or loosening it until no beats are heard.

31. Define Beat and beat frequency.

Ans: Beat: Two waves of slightly different frequencies and travelling in the same direction produce beats.
East frequency: Number of beats per second is called beat frequency which is equal to the difference in frequencies.

32. Define beats and explain it with an example. (3 Times)

Ans: Beats are produced when two waves of slightly different frequencies and travelling in the same direction superpose to each other. If two tuning forks of slightly different frequencies say 256Hz and 254Hz are sounded together, a note of alternately increasing and decreasing intensity will be heard. This note is called beat which is due to interference between the sound waves from two tuning forks.

33. What are beats and name its one use.

Ans: Beats are produced in a medium, when two slightly different frequencies travelling in the same direction interfere in that medium. One can use beats to tune a string instrument, such as piano.

34. What is difference between interference and beats.

Ans: Interference is produced due to superposition of two waves having same frequency. Beats are produced when two waves of slightly different frequencies superpose with each other.

Topic VIII: Stationary Waves:

35. Is it possible for two identical waves travelling in the same direction along the string to give rise to a stationary wave?

(15 Times)

Ans: No, it is not possible for two identical waves travelling in the same direction along a string to give rise to stationary waves. For stationary waves, two identical waves must travel in opposite direction.

36. A wave is produce along a stretched string but some of its particles permanently show zero displacement. What type of wave is it? (2 Times)

Ans: A wave is produced along a stretched string but some of its particles permanently show zero displacement. It is a stationary wave and points at zero displacement are called nodes.

43.

Which is richer in harmonics? An open organ pipe or a closed organ pipe? 37. For closed organ pipe Ans:

 $f_n = \frac{nv}{4l}$

For open organ pipe

This shows that the pipe, which is open at both ends i.e. open organ pipe is

How stationary waves are produced in a medium. 38.

These waves are produced by the superposition of two identical waves traveling Ans: in opposite direction. When a stretched string clamped at its two ends is plucked then the stationary waves are produced. 39.

Write the effect on Transverse wave when it is reflected from: (2 times) (ii) Rare Medium

Denser Medium: If a transverse wave traveling in a rarer medium is incident on a Ans: denser medium, it is reflected such that it undergoes a phase change of 180°. Rare Medium: If a transverse wave traveling in a denser medium is incident on a rarer medium, it is reflected without any change in phase. 40.

What do you mean by the term progressive waves?

A wave which transfers energy by moving away from the source of disturbance Ans: is called progressive wave. For example, longitudinal and transverse waves. 41.

Why "stationary waves" are called standing waves? Ans:

In stationary waves energy cannot flow past the nodes and remains "standing" in the medium between nodes. Therefore, stationary waves are called standing waves. 42.

Which is richer in harmonics, and why:

(a) an open organ pipe (b) A closed organ pipe. The pipe, which is open at both ends, is richer in harmonics.

At open end molecules of the air are free to move and an antinode is formed while the movement of air molecules is restricted at the closed end and a

Therefore, the pipe open at both ends have antinode at each end and is richer in harmonics.

What are the quantities which affect the frequency of standing waves along a string? The frequency of standing waves along a stretched string in given as

 $f_n = \frac{nv}{2l}$ or $f_n = \frac{n}{2l} \sqrt{\frac{F}{m}}$

Thus frequency depends upon mass per unit length of string "m" tension of the string "F" and length of the string "I".

Give the rules for the reflection of waves from the boundary of a 44. (i) denser medium (ii) rarer medium.

If a transverse wave travelling in a rarer medium is incident on a denser Ans: medium, it is reflected such that if undergoes a phase change of 180°.

If a transverse wave travelling in a denser medium is incident on a rarer medium, it is reflected without any change in phase.

On what factors does the fundamental frequency in a stretched string 45. depends?

Fundamental frequency is given as $f_1 = \frac{1}{2!} \sqrt{\frac{F}{m}}$

Thus, $f_{\rm i}$ depends upon

- i. Mass per unit length of the string "m"
- ii. Tension in the string "F"
- III. Length of the string "!"

What do you mean by harmonic series? 46.

The stationary waves have a discrete set of frequencies $f_1, 2f_1, 3f_1, \dots, nf_n$ Ans: which is known as harmonic series.

47. What are the conditions for points which are in phase and out of phase?

Any two points repeated from one another by distance $\lambda, 2\lambda, 3\lambda, \ldots$ are all Ans: in phase with each other. Any two points separated from one another by distance $\frac{\lambda}{2}, \frac{3\lambda}{2}, \frac{5\lambda}{2}$ are all out of phase with each other.

Topic IX: Doopler Effect:

48. What is radar?

Ans: It is an acronym for Radio Detection and Ranging. It is a device which transmits and receives radio waves which are used to determine height and speed of aeroplane.

49. Define Doppler Effect.

Ans: The apparent change in the frequency of sound due to relative motion between the observer and source of sound is called Doppler Effect. If the observer and source of sound are approaching then the frequency of sound will increase and vice versa.

50. Can Doppler Effect be applied to electromagnetic waves? Give an example.

Yes, Doppler effect can be applied to electromagnetic waves. For example, in Ans: radar systems, the Doppler effect is used to determine the elevation and speed of aeroplane.

51. What is apparent change in frequency when source is moving away from stationary observer?

When the source is moving away from the observer, apparent frequency Ans:

 $f_D = \left(\frac{v}{v + u_S}\right)t$

How should a source of sound move w.r.t an observer so that the frequency of 52. its sound does not change?

If sound source is moving in circular path with the observer at the center of the (7 Times) Ans: circle then relative velocity of the observer with respect to the source of sound is zero, there will be no change in the frequency of sound. 53.

How Doppler Effect is applied to a radar system? (3 Times) Ans:

In radar systems, the Doppler effect is used to determine the elevation and speed of aeroplane.

If the aeroplane approaches towards the radar, then the wavelength of the wave reflected from the aeroplane would be shorter and if the aero plane moves away from radar, then the wavelength of the wave reflected from the aero plane would be larger

54. How astronomers use the Doppler Effect to calculate the speed of different

Astronomers use the Doppler Effect to calculate the speed of distant stars and galaxies. Stars moving towards the Earth show a blue shift, while stars moving away from the Earth show a red shift.

By comparing the line spectrum of light from the star with light from a laboratory source, the Doppler shift of the star's light can be measured. Then the speed of

star can be calculated.

55. Explain the term red shift and blue shift in Doppler's Effect. (4 Times) Stars moving away from the Earth show red shift. The emitted waves have a Ans: longer wavelength than if the star had been at rest. So the spectrum is shifted towards longer wavelength.

Stars moving towards the Earth show blue shift. This is because the wavelength of light emitted by the star is shorter than if the star had been at rest. So the spectrum is shifted towards shorter wavelength.

Write four applications of Doppler's Effect. 56. Ans:

(3 Times) (i) Radar system uses radio waves to determine the elevation and speed of an

(ii) Sonar is a technique for detecting the presence of objects under water by

(iii) Astronomers calculate the speeds of distant stars and galaxies.

(iv) In radar speed trap, by measuring the Doppler shift, the speed at which the car moves is calculated by computer programme.

What is meant by Sonar? Explain. 57.

(2 Times)

Sonar is an acronym derived from "sound navigation and ranging". Sonar is the Ans: name of a technique for detecting the presence of objects under water by

It employs the Doppler Effect, in which an apparent change in frequency occurs when the source and the observer are in relative motion. Its applications are detection of submarines, mine hunting and depth measurement of sea.

How can Doppler effect be used to monitor blood flow through major artaries? 58. (2 Times)

Ultrasound waves of frequencies 5MHz to 10MHz are directed towards the Ans: artery and a receiver detects the back scattered signal. The apparent frequency depends upon the velocity of flow of the blood.

State Doppler Effect. Write down its one application. 59.

Ans: The apparent change in the frequency of sound due to relative motion between the observer and source of sound is called Doppler Effect. In radar systems, The Doppler Effect is used to determine the elevation and speed of Aeroplane.

What is effect on frequency of sound waves, when source and observer are 60. moving towards each other?

Ans: According to Doppler Effect when source and observer are moving towards each other, frequency of sound waves will increase.

61. What do you know about radar speed trap?

In radar speed trap microwaves are emitted from a transmitter in short bursts. Ans: After reflecting from a car or any moving obstacle waves are received by the transmitter. By measuring the Doppler shift, the speed at which the car moves is calculated by computer programme.

2021

Write down the characteristics of stationary waves. 62,

Ans:

The points of zero displacement in the stationary waves are called nodes.

li. The points of maximum displacement in the stationary waves are called anti-

No energy is transferred from particle to particle in stationary waves. iii.

iv. Particles, except nodes perform SHM with the same period as the component Distance between the two consecutive nodes or anti-nodes is equal to $\lambda/2$.

Distance between node and its neighboring anti-nodes is equal to $\lambda/4$. ٧.

If a string vibrates in four segments at a frequency of 120 Hz, determine its ٧i.

63. fundamental frequency?

Ans:

$$f_4 = 120 Hz$$

 $n = 4$
 $f_1 = ?$
 $f_4 = 4f_1$

$$f_1 = \frac{f_4}{4}$$
 $f_1 = \frac{120}{4} = 30 \text{ Hz}$

64. How temperature and density of the medium effect the speed of sound?

Ans: Effect of temperature: Whereas when a gas is heated at constant pressure then its volume, is increased and density is decreased, so the speed of sound is increased with rise in temperature and vice versa. $v_t = v_0 + 0.61$ t. One degree Celsius rise in temperature produces approximately 0.61m/s increase in the speed of sound.

Effect of density:

Speed of sound in air is

$$v = \sqrt{\frac{\gamma P}{\rho}}$$

The speed is inversely proportional to the square root of their densities.

$$v \propto \frac{1}{\sqrt{\rho}}$$

So, the speed of sound is less in a denser medium and vice versa.

65. Speed of sound in air at 0 °C is 332 ms⁻¹. Find its speed at 20 °C.

Sol:

$$v_t = v_0 + 0.61t$$

 $v_t = 332 + 0.61(20)$
 $v_t = 332 + 12.2 = 344.2 \, ms^{-1}$

If velocity of sound is 332 ms-1 at 0 °C then what will be its velocity at 10 °C.

Sol:

Since

$$v_t = v_0 + 0.61t$$

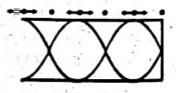
 $v_t = 332 + 0.61(10)$
 $v_t = 332 + 6.1 = 338.1 \, ms^{-1}$

What do you meant by quantization of frequency for stationary wave? 67. If the string is made to vibrate in n loops, then its frequency f_n is described by the Ans: relation;

 $f_n=nf_1$ This proves that the frequencies of stationary waves are stretched string are quantized. This phenomenon is known as quantization of frequency for stationary wave.

What is the frequency and the wavelength of third harmonic in a closed organ 68.

Ans:


From figure;

$$l = \frac{\lambda}{4} + \frac{\lambda}{2} + \frac{\lambda}{2} = \frac{\lambda + 2\lambda + 2\lambda}{4} = \frac{5\lambda}{4}$$

$$\lambda = \frac{4l}{5}$$

$$v = f \lambda \qquad \text{or} \qquad f = \frac{v}{\lambda} = \frac{v}{\frac{4l}{5}}$$

$$f_5 = \frac{5v}{4l}$$

As

69. Define Beat and stationary waves.

Beat: Two waves of slightly different frequencies and travelling in the same Ans: direction produce beats.

Stationary waves: When two identical waves have same frequency travelling in opposite direction superpose each other, the waves are produced called stationary wave.

What is period of 250 cycles per second of sound waves? 70.

As Time period = 1/frequency Ans:

therefore, time period = 1/250 = 0.004 s

Find the temperature at which the velocity of sound in air is two times its 71.

Given that Ans:

> $10\,^{\circ}C = 10 + 273 = 283\,K$ Suppose at T K, the velocity is two times its value at 283 K.

$$\frac{v_t}{v_{283}} = \sqrt{\frac{T}{283 K}}$$

By applying given condition

$$\sqrt{\frac{T}{283 \, K}} = 2$$

$$\frac{T}{283 \, K} = 4$$

$$T = 4 \, (283 \, K) = 1132 \, K = 859 \, ^{\circ}\text{C}$$

LONG QUESTIONS OF CHAPTER-8 IN ALL PUNJAB BOARDS 2011-2021

Topic II: Speed of Sound in Air:

- 1. What is the limitation of Newton's formula for the speed of sound in air? How Laplace corrected it.
- 2. Derive Newton's formula for the spreed of sound in air and describe the correction by Laplace in it. (5 Times)

Topic III: Sspeed of Sound in a Gas:

3. What is the effect of temperature on the speed of sound and derive the relation $V_1 = V_0 + 0.61t$.

Topic VI: Beats:

- 3. Explain beats with example. Write its two uses.
- 4. Define and explain the phenomenon of beats. How beats are graphically represented? Also mention the uses of beats.

lopic VIII: Stationary Waves:

5. What are stationary waves? Describe the stationary waves produced in a stretched string and prove that their frequencies are quantized. (5 Times)

Topic IX: Doopler Effect:

- 6. What is Doppler's effect? Find the relations for modified frequencies, when
 - (i) An observer moves towards a stationary source. (ii) A source moves towards a stationary observer.
- 7. What is Doppler's effect? Discuss the cases when its source moves towards and away from a stationary observer. (2 Times)
- 8. What is Doppler's effect? Explain it for two cases.
- 9. State Doppler's effect and discuss the case when the observer moves towards the staticonary source. Also write at least one application. (2 Times)
- 10. What is Doppler's effect? What is the change in pitch of the sound wave when observer is moving towards and away from stationary source.
- 11. What is Doppler's effect? Discuss its for cases. (3 Times)

NUMEICAL PRROBLEMS OF CHAPTER-8 IN ALL PUNJAB BOARDS 2011-2021

Topic II: Speed of Sound in Air:

1. Find the temperature at which the velocity of sound in air is two times its velocity at 10°C. (14 Times)

Sol:

Given that

$$10^{\circ}C = 10 + 273 = 283 K$$

Suppose at T K, the velocity is two times its value at 283 K.

$$\frac{v_t}{v_{283}} = \sqrt{\frac{T}{283 K}}$$

By applying given condition

$$\sqrt{\frac{T}{283 K}} = 2$$

$$\frac{T}{283 K} = 4$$

$$T = 4(283 K)$$

$$T = 1132 K \text{ or } 859^{\circ}C$$

Topic VI: Beats:

Two tuning forks exhibit beats at a beat frequency of 3 Hz. The frequency of one of the fork is 256 Hz. Its frequency is then lowered adding a bit of wax to one of its prongs. The two tuning forks then exhibit a beat frequency of 1 Hz. Determine the frequency of second tuning fork. (2 Times)

Sol:

Given that

beat frequency =
$$3 Hz$$

frequency of one tuning fork = 256 Hz

So, there are two possibilities.

$$256 + 3 = 259 Hz$$

Or

$$256 - 3 = 253 Hz$$

But the frequency of first tuning fork is lowered and beat frequency becomes 1Hz. Hence,

frequency of second tuning fork = 253 Hz

Topic VIII: Stationary Waves:

3. A pipe has length of 1 meter. Determine the frequencies of the fundamental and the first two harmonics if the pipe opens at both ends. (Speed of sound in air is $340 \ ms^{-1}$).

Sol:

Given that

$$l = 1 m$$

 $v = 340 ms^{-1}$
 $f_1 = ?$
 $f_2 = ?$

We know that

$$f_n = \frac{f_3}{2l} = ?$$

for fundamental harmonic

$$f_1 = \frac{1 \times 340}{2 \times 1}$$

$$f_1 = 170 \text{ s}^{-1}$$

$$f_1 = 170 \text{ Hz}$$

$$f_2 = 2f_1$$

For second harmonic

$$f_2 = 2f_1$$

$$f_2 = 2 \times 170$$

$$\boxed{f_2 = 340 \text{ Hz}}$$

$$f_3 = 3f_1$$

For third harmonic

$$f_3 = 3f_1$$

$$f_3 = 3 \times 170$$

$$f_3 = 510 \text{ Hz}$$

A stationary wave is established in a string which in 120 cm long and fixed at both ends. The string vibrated in four segments, at a frequency of 120 Hz.

Determine its wavelength and the fundamental frequency. (9 Times)

Sol:

Given that

$$l = 120 cm = 0.12 m$$

$$f = 120 Hz$$

$$n = 4$$

$$\lambda = ?$$

$$f_1 = ?$$

Since

$$\lambda = \frac{2\lambda}{n}$$

$$\lambda = \frac{2 \times 0.12}{4}$$

And

$$\lambda = 0.6 m$$

$$f_4 = 4f_1$$

 $f_{1} = \frac{f_{4}}{4}$ $f_{1} = \frac{120}{4}$

 $f_2 = 30 \; Hz$

5. The frequency of note emitted by stretched string in 300 Hz. What will be frequency of this note when the length of the wire is reduced by one third frequency of this note when the length of the wire is reduced by one third without changing the tension of wire?

(4 Times)

Sol:

Given that

$$f = 300 Hz$$
$$f' = ?$$

The change in length will be

$$l' = \left(1 - \frac{1}{3}\right)l = \frac{2}{3}l$$

$$f_1 = \frac{1}{2l}\sqrt{\frac{F}{m}}$$

Since

$$f_1' = \frac{1}{2l'} \sqrt{\frac{F}{m}}$$

$$f_1' = \frac{1}{2\left(\frac{2}{3}l\right)} \sqrt{\frac{F}{m}}$$

$$f_1' = \frac{3}{2} \left(\frac{1}{2l} \sqrt{\frac{F}{m}}\right)$$

$$f_1' = \frac{3}{2} f_1$$

$$f_1' = \frac{3}{2} (300)$$

$$\boxed{f_1' = 450 \text{ Hz}}$$

A church organ consists of pipes each open at one end of different lengths the 6. minimum length is 30 mm and the longest is 4 m. Calculate the frequency range of the fundamental notes (Speed of sound in air is $340 \ ms^{-1}$). (6 Times)

Sol:

Given that

$$minimum \ length = 30 \ mm = \frac{30}{1000} m$$

 $longest\ length = 4\ m$

For one end open

$$f_n = \frac{nv}{4l}$$

For minimum length

$$f_1 = \frac{\frac{7}{4l}}{340}$$

$$f_1 = \frac{340}{4 \times \frac{30}{1000}}$$

For maximum length

$$f_1 = 2833 \, Hz$$

$$f_1 = \frac{v}{4l}$$

$$f_1 = \frac{340}{4 \times 4}$$

$$f_1 = 21 \, Hz$$

Hence the frequency of fundamental note ranges from 21 Hz to 2833 Hz.

7. A pipe has a length of 1 m, determine the frequencies of fundamental and the first two harmonics: (i) If pipe is open at both ends(ii) If pipe is closed at one end.

Sol:

Given that

$$l = 1 m$$

$$v = 340 \, ms^{-1}$$

$$f_1 = ?$$

$$f_2 = ?$$

$$f_3 = 3$$

We know that when pipe is open at both ends $f_n = \frac{nv}{2L}$ (i) For fundamental harmonic

$$f_1 = \frac{1 \times 340}{2 \times 1}$$

$$f_1 = 170 \text{ s}^{-1}$$

$$f_1 = 170 \text{ Hz}$$

For second harmonic $f_2 = 2f_1$

$$f_2 = 2 \times 170$$

$$f_2 = 340 \text{ Hz}$$

For third harmonic $f_3 = 3f_1$

$$f_3 = 3 \times 170$$

$$f_3 = 510 \text{ Hz}$$

(ii) We know that when pipe is open at both ends $f_n = \frac{nv}{4l}$ For fundamental harmonic put n = 1

$$f_1 = \frac{1 \times 340}{4 \times 1}$$

$$f_1 = 85 \, s^{-1}$$

$$f_1 = 85 \, Hz$$

In this case only odd harmonics are present. So, for second harmonic $f_3=3f_1$

$$f_3 = 3 \times 85$$
$$f_3 = 255 Hz$$

For third harmonic $f_5 = 5f_1$

$$f_5 = 5 \times 85$$

$$f_3 = 425 Hz$$

An organ pipe has a length of 50 cm. Find the frequency of its fundamental note and the next harmonic when it is open at both ends. (Speed of sound = 350ms⁻¹)

(4 Times)

Sol: Given that

$$l = 50 cm = 0.5 m$$

 $v = 350 ms^{-1}$
 $f_1 = ?$
 $f_2 = ?$

We know that when pipe is open at both ends $f_n = \frac{nv}{2l}$

For fundamental harmonic

$$f_1 = \frac{1 \times 350}{2 \times 0.5}$$

$$f_1 = 350 \text{ Hz}$$

For second harmonic $f_2 = 2f_1$

$$f_2 = 2 \times 350$$

$$f_2 = 700 \text{ Hz}$$

Topic IX: Doopler Effect:

The absorption spectrum of faint galaxy is measured and wavelength of one of the lines identified as the calcium α -line is found to be 478 nm. The same line has wavelength of 397 nm, when measured in laboratory. Find speed of galaxy relative to earth.

Sol:

$$\lambda$$
 = 397 nm = 397 \times 10^{.9}m
 λ ' = 478 nm = 478 \times 10^{.9} m
C = 3 \times 10⁸ m/s

Speed of galaxy relative to earth = Us =?

As
$$C = f \times G$$

or $f = \frac{C}{2}$
 $f = \frac{3 \times 10^8}{397 \times 10^{-9}} = 7.56 \times 10^{14} \text{ Hz}$

Similarly

$$f' = \frac{c}{x'} = \frac{3 \times 10^8}{397 \times 10^{-9}} = 6.28 \times 10^{14} \text{ Hz}$$

Since f'< f, so glaxy is moving away from earth. According to Doppler's effect.

or
$$f' = \left(\frac{V}{V + U_s}\right) f$$

$$U_s = \frac{c (f - f')}{f'}$$

$$U_s = \frac{3 \times 10^8 (7.56 \times 10^{14} - 6.28 \times 10^{14})}{6.28 \times 10^{14}} = \frac{3 \times 10^8 (1.28 \times 10^{14})}{6.28 \times 10^{14}}$$

$$U_s = 6.12 \times 10^7 \text{ ms}^{-1}$$

A train is approaching a station at 90 kmh⁻¹, sounding a whistle of frequency 1000 Hz. What will be the apparent frequency of the whistle as heard by a listener sitting on the platform? (2 Times)

Sol:

f = 1000 Hz

$$V = 340 \text{ ms}^{-1}$$

 $U_s = 90 \text{ kmh}^{-1} = \frac{90 \times 1000}{60 \times 60} \text{ ms}^{-1} = 25 \text{ ms}^{-1}$
 $f' = ?$

When train is approaching towards the listener

$$f' = \left(\frac{v}{v - u_s}\right) f$$

$$f' = \left(\frac{340}{340 - 25}\right) 1000s$$

$$f' = 1079.4 \text{ Hz}$$

2021

The wavelength of signal from a radio transmitter is 1500 m and frequency is 11. 200 kHz. What is wavelength for a transmitter operating at 1000 kHz and with what speed the radio wave travel?

Sol:

As and

wavelength of signals =
$$\lambda_1$$
= 1500 m frequency of signals = f = 200 kHz= 200 × 1000 Hz = 2 × 10⁵ Hz frequency for transmitter = f = 1000 kHz= 1000 × 1000 Hz = 1 × 10⁶ Hz wavelength for transmitter = λ_2 =? Speed of radio waves = v =?
$$v = f_1 \lambda_1 = 2 \times 10^5 \times 1500 = 3 \times 10^8 \, \text{ms}^{-1}$$

$$v = f_2 \lambda_2 \qquad \text{or} \qquad \lambda_2 = v/f_2$$

$$\lambda_2 = 3 \times 10^8/1 \times 10^6 = 3 \times 10^2 = 300 \, \text{m}$$

OBJECTIVES (MCQ'S) OF CHAPTER-9 IN ALL PUNJAB BOARD 2011-2021

Topic I: Wavefronsts:	
face on Which all the hoints have came phace of vibration	on known as:
(A) Crest (B) Trough (C) Wave front	(D) Wavelength
2. Light from sun reaches the earth in form of:	(2)
	ıt .
(A) Spherical wave front (B) Plane wave front (C) Hyperbolic wave	e front
(C) Elliptical wave front (D) Hyperbolic wav	e none
3. The light emitted from LED has a typical wavelength:	(D) Variable quantity
(A) 1.3 pm (B) 1.3 μm (C) 1.3 mm	(D) Variable qualities,
4.The phase difference between two points on wave front is:	T 1 . T
(B) π /4 (C) π /2	(D) π
a when noth difference is an integral multiple of wavelengths	the effect is called:
(A) Coherency (B) Distractive inter	rference
(A) Coherency (B) Distractive interference (C) Constructive interference (D) Phase leg	
6.In case of point source, the shape of wave front is:	(2 Times)
6.In case of point source, the shape of wave front is: (A) Plane (B) Spherical (C) Circular 7 Angle between ray of light and wave front is:	(D) Elliptical
7. Angle between ray of light and wave front is:	(3 Times)
	(d) 120 ⁰
1410	
Topic II: Huygen's Principle:	
8. The wave nature of light was proposed by: (A) Young (B) Galileo (C) Huygen (A) Young (B) Galileo (C) Huygen	(D) Newton
9. "The light energy travels in space as waves, was in sty pro-	(D) Huygen
(A) Maxwell (B) Young	acts as a source of:
10. According to Hygen's principle, each point	t (D) Sound
(A) Secondary wavelet (B) Printary wavelet	65
11. Which phenomena shows that light wave is transverse way	(D) Reflection
(A) 1 A TOWN CO IDIDITION TO THE TOWN CO	20
THE PART OF THE PA	(5 Times)
AA EL CIATA CONCINO INCLEOSO II	(D) Vallow light
	is given by:
(A) Red light (B) Blue light (C) Green light (A) Red light (B) Blue light (C) Green light (C) Green light (C) $Y_m = \frac{m\lambda L}{d}$ (C) $Y_m = \left(m + \frac{1}{2}\right)\frac{\lambda L}{d}$ (A) $Y_m = \frac{m\lambda L}{d}$ (B) $Y_m = \frac{m\lambda d}{L}$ (C) $Y_m = \left(m + \frac{1}{2}\right)\frac{\lambda L}{d}$	inges is given by.
13. The young's double ship d and d and d	(D) $Y = m + \frac{1}{m} \frac{\lambda a}{m}$
$m\lambda L \qquad (B) Y_m = \frac{m\lambda a}{L} \qquad (C) Y_m = \begin{pmatrix} m+2 \end{pmatrix} d$	(2)L
14. In Young's double slit experiment, the position of Edges $Y = m\frac{\lambda d}{d}$ $Y_m = \frac{m\lambda}{Ld}$ (C)	$Y_m = \frac{mLd}{\lambda}$
14. In Young's double slit experiment, $Y_{m} = m \frac{\lambda d}{L} \qquad Y_{m} = \frac{m\lambda}{Ld} \qquad (C)$ (A) (B) (B) (B) Proportional to: (B) Slit Separation	(D) " \lambda \lambda
$Y_m = m \frac{1}{r} \qquad (B)^{-m} Ld \qquad (C)$	
(A) (B) (B) (B) Slit Separation 15. Fringe spacing is Inversely Proportional to: (B) Slit Separation (D) Frequency of L	
15. Fringe spacing is	ight
(A) Wavelength (C) Distance between the slits and screen (D) Frequency of L (2 Times)	
(C) Distance between to:	$m\lambda L$
The Fringe Spacing 17	
$\frac{\lambda d}{L} \qquad (B) \frac{\lambda L}{d} \qquad (C) \frac{\lambda d}{\lambda d}$	(D) d
(A) L (B) the Films:	
(A) L Topic V: interference in thin Films: Topic V: interference in thin Films: 17. The refractive index of water is 1.33. The speed of light in the	water is:
17. The refractive index of water is $\frac{10^{8} \text{ ms}^{-1}}{\text{(B)}}$ (C) $2.3 \times 10^{8} \text{ ms}^{-1}$	(D) zero
(A) 2 × 10 ms ⁻¹ (B) 1.8 × 10 ms consecutive wave fronts is called	ed:
17. The refractive index of water (C) 2.3×10 ms (B) 1.8×10 ms (A) 3×10 ms (B) 1.8×10 ms (C) 2.3×10 ms (C) 2.3×10 ms (E) the second (C) wavelength (C) wavelength	(D) displacement
(A) Time period (B) frequent	

(A) Diffraction of light	bubbles are due to:
1611-	(B) Polarization of light
(C) Interference of light	(D) Reflection of light
20. The value of critical angle of glass-air	
(A) 41.8° (B) 41.5° 21.Thin oil film on water surface shows (A) Differentiation	(C) 42.8° (D) 42
(A) Diffraction (B) Interference	colour due to: (2 Times) (C) Polarization (D) Dispersion
22.Two wave light which are not cohered	nt cannot produce:
(A) interference	(B) Diffraction
(C) Polarization in same plane	(D) Return back
Topic VI: Newton's Rings:	
23. The center of Newton's rings is dark of	lue to: (2 Times)
(A) Constructive interference	(B) destructive interference
(C) Diffraction	(D) Polarization
24.The distance between two adjacent b	right fringes: (2 Times)
(A) $\frac{2\lambda L}{d}$ (B) $\frac{3\lambda L}{d}$ 25. The central point of Newton's Ring is:	(C) $\frac{\lambda L}{2d}$ (D) $\frac{\lambda L}{d}$
25. The central point of November 4	(C) $\frac{\lambda L}{2d}$ (D) $\frac{\lambda L}{d}$
(A) Bright (B) Dark	
26. Newton's sings are formed due to nh	(C) Blue (D) Red
the section of light	(B) Interference of light
(C) Polarization of light	(B) Interference of light (D) Total Internal reflection
Topic VII: Michelson's Interferement	
271116 equation of Michelson's interfore	
(A) $L = \frac{m\lambda}{2}$ (B) $L = \frac{m\lambda}{4}$	
$\frac{2}{4}$	(C) $L = m\lambda$ (D) $L = 2m\lambda$
28. The Michelson interferometre is used	
1 1/1/ THE FELL ACTIVE IDDREY OF GLOCK	(5)
(C) The distance with very high precision 29. In Michelson's experiment the county	(D) Optical rotation
i ment the equati	on used to find the speed of light: (2 times)
(A) 16fc (B) $\frac{1}{-}$ fd	on used to find the speed of light: (2 times)
(A) 16fc (B) $\frac{1}{16}$ fd	(C) 16fd (D) 16
(A) 16fc (B) $\frac{1}{16}$ fd	(C) 16fd (D) 16
30.In Michelson interferometer to switce should be displaced by:	(C) 16fd (D) $\frac{16}{fd}$ h the fringe from bright to dark, the mirror
30.In Michelson interferometer to switce should be displaced by: (A) $\frac{\lambda}{2}$	(C) 16fd (D) $\frac{16}{fd}$ (D) $\frac{16}{fd}$ (D) $\frac{16}{fd}$ (D) $\frac{1}{fd}$
30.In Michelson interferometer to switce should be displaced by: (A) $\frac{\lambda}{2}$	(C) 16fd (D) $\frac{16}{fd}$ (D) $\frac{16}{fd}$ (D) $\frac{16}{fd}$ (D) $\frac{1}{fd}$
(B) $\frac{1}{16}$ fd 30.In Michelson interferometer to switch should be displaced by: (A) $\frac{\lambda}{4}$ (B) $\frac{\lambda}{3}$ 31. In Michelson's experiment, the angle is:	(C) 16fd (D) $\frac{16}{fd}$ (D) $\frac{16}{fd}$ (D) $\frac{1}{fd}$ (D)
(B) $\frac{1}{16}$ fd 30.In Michelson interferometer to switch should be displaced by: (A) $\frac{\lambda}{4}$ (B) $\frac{\lambda}{3}$ 31. In Michelson's experiment, the angle is:	(C) 16fd (D) $\frac{16}{fd}$ (D) $\frac{16}{fd}$ (D) $\frac{1}{fd}$ (D)
 (A) 16 (B) 1/16 fd 30.In Michelson interferometer to switch should be displaced by: (A) λ/4 (B) λ/3 31. In Michelson's experiment, the angle is: (A) π/8 rad (B) π/4 rad 	(C) 16fd (D) $\frac{16}{fd}$ (D) $\frac{16}{fd}$ (D) $\frac{1}{fd}$ (D)
30.In Michelson interferometer to switch should be displaced by: (A) $\frac{\lambda}{4}$ (B) $\frac{\lambda}{3}$ 31. In Michelson's experiment, the angle is: (A) $\frac{\pi}{8}$ (B) $\frac{\pi}{4}$ rad 32. Michelson interferometer can be used	on used to find the speed of light: (2 times) (C) 16fd (D) $\frac{16}{fd}$ The the fringe from bright to dark, the mirror (C) $\frac{\lambda}{2}$ (D) λ subtended by a side of the eight sided mirror (C) $\frac{\pi}{2}$ rad (D) $\frac{\pi}{6}$ rad Ito find the:
 (A) 161C (B) 1/16 fd 30.In Michelson interferometer to switch should be displaced by: (A) λ/4 (B) λ/3 31. In Michelson's experiment, the angle is: (A) π/8 rad (B) π/4 rad 32. Michelson interferometer can be used (A) Wavelength of light 	on used to find the speed of light: (2 times) (C) $16fd$ (D) $\frac{16}{fd}$ The the fringe from bright to dark, the mirror (C) $\frac{\lambda}{2}$ (D) λ subtended by a side of the eight sided mirror (C) $\frac{\pi}{2}$ (D) $\frac{\pi}{6}$ rad I to find the: (B) Wavelength of sound
 (A) 16fc (B) 1/16 fd 30.In Michelson interferometer to switch should be displaced by: (A) λ/4 (B) λ/3 31. In Michelson's experiment, the angle is: (A) π/8 rad (B) π/4 rad 32. Michelson interferometer can be used (A) Wavelength of light (C) Velocity of sound 	on used to find the speed of light: (2 times) (C) 16fd (D) $\frac{16}{fd}$ The the fringe from bright to dark, the mirror (C) $\frac{\lambda}{2}$ (D) λ subtended by a side of the eight sided mirror (C) $\frac{\pi}{2}$ rad (D) $\frac{\pi}{6}$ rad Ito find the:
 (A) 16fc (B) 1/16 fd 30.In Michelson interferometer to switch should be displaced by: (A) λ/4 (B) λ/3 31. In Michelson's experiment, the angle is: (A) π/8 rad (B) π/4 rad 32. Michelson interferometer can be used (A) Wavelength of light (C) Velocity of sound (Doic VIII: Diffraction of Light) 	on used to find the speed of light: (2 times) (C) 16fd (D) $\frac{16}{fd}$ The the fringe from bright to dark, the mirror (C) $\frac{\lambda}{2}$ (D) λ subtended by a side of the eight sided mirror (C) $\frac{\pi}{2}$ rad (D) $\frac{\pi}{6}$ rad I to find the: (B) Wavelength of sound (D) Velocity of light
 (A) 161C (B) 1/16 fd 30.In Michelson interferometer to switch should be displaced by: (A) λ/4 (B) λ/3 31. In Michelson's experiment, the angle is: (A) π/8 rad (B) π/4 rad 32. Michelson interferometer can be used (A) Wavelength of light (C) Velocity of sound 100ic VIII: Difraction of Light 33. Bending of light around the edges of a (A) Refraction (B) Polarination 	on used to find the speed of light: (2 times) (C) $16fd$ (D) $\frac{16}{fd}$ The the fringe from bright to dark, the mirror (C) $\frac{\lambda}{2}$ (D) λ subtended by a side of the eight sided mirror (C) $\frac{\pi}{2}$ rad (D) $\frac{\pi}{6}$ rad I to find the: (B) Wavelength of sound (D) Velocity of light In obstacle is known as:
 (A) 161C (B) 1/16 fd 30.In Michelson interferometer to switch should be displaced by: (A) λ/4 (B) λ/3 31. In Michelson's experiment, the angle is: (A) π/8 rad (B) π/4 rad 32. Michelson interferometer can be used (A) Wavelength of light (C) Velocity of sound 100ic VIII: Difraction of Light 33. Bending of light around the edges of a (A) Refraction (B) Polarination 	on used to find the speed of light: (2 times) (C) $16fd$ (D) $\frac{16}{fd}$ The the fringe from bright to dark, the mirror (C) $\frac{\lambda}{2}$ (D) λ subtended by a side of the eight sided mirror (C) $\frac{\pi}{2}$ rad (D) $\frac{\pi}{6}$ rad I to find the: (B) Wavelength of sound (D) Velocity of light In obstacle is known as:
 (A) 16fc (B) 1/16 fd 30.In Michelson interferometer to switch should be displaced by: (A) λ/4 (B) λ/3 31. In Michelson's experiment, the angle is: (A) π/8 rad (B) π/4 rad 32. Michelson interferometer can be used (A) Wavelength of light (C) Velocity of sound 100ic VIII: Difraction of Light 33. Bending of light around the edges of a (A) Refraction (B) Polarization 34. Optical rotation a property of optically ac (A) Density 	on used to find the speed of light: (2 times) (C) $16fd$ (D) $\frac{16}{fd}$ The the fringe from bright to dark, the mirror (C) $\frac{\lambda}{2}$ (D) λ subtended by a side of the eight sided mirror (C) $\frac{\pi}{2}$ rad (D) $\frac{\pi}{6}$ rad I to find the: (B) Wavelength of sound (D) Velocity of light In obstacle is known as: (C) Diffraction (D) Interference (C) Constance can be used to determine their:
 (A) 16 (B) 1/16 fd 30.In Michelson interferometer to switch should be displaced by: (A) λ/4 (B) λ/3 31. In Michelson's experiment, the angle is: (A) π/8 rad (B) π/4 rad 32. Michelson interferometer can be used (A) Wavelength of light (C) Velocity of sound Iopic VIII: Difraction of Light 33. Bending of light around the edges of a (A) Refraction (B) Polarization 34. Optical rotation a property of optically ac (A) Density (B) Viscosity 35. Using a graded index fiber, the time difference of the control of	on used to find the speed of light: (2 times) (C) $16fd$ (D) $\frac{16}{fd}$ The the fringe from bright to dark, the mirror (C) $\frac{\lambda}{2}$ (D) λ subtended by a side of the eight sided mirror (C) $\frac{\pi}{2}$ rad (D) $\frac{\pi}{6}$ rad Ito find the: (B) Wavelength of sound (D) Velocity of light In obstacle is known as: (C) Diffraction (D) Interference (C) Concentration in solutions (D) Elasticity (C) Concentration in solutions (D) Elasticity
 (A) 16fc (B) 1/16 fd 30.In Michelson interferometer to switch should be displaced by: (A) λ/4 (B) λ/3 31. In Michelson's experiment, the angle is: (A) π/8 rad (B) π/4 rad 32. Michelson interferometer can be used (A) Wavelength of light (C) Velocity of sound Image: Image: Imag	on used to find the speed of light: (2 times) (C) $16fd$ (D) $\frac{16}{fd}$ The the fringe from bright to dark, the mirror (C) $\frac{\lambda}{2}$ (D) λ subtended by a side of the eight sided mirror (C) $\frac{\pi}{2}$ rad (D) $\frac{\pi}{6}$ rad Ito find the: (B) Wavelength of sound (D) Velocity of light In obstacle is known as: (C) Diffraction (D) Interference (C) Concentration in solutions (D) Elasticity ference is reduced to about:
 (A) 16 fc (B) 1/16 fd 30. In Michelson interferometer to switch should be displaced by: (A) λ/4 (B) λ/3 31. In Michelson's experiment, the angle is: (A) π/8 rad (B) π/4 rad 32. Michelson interferometer can be used (A) Wavelength of light (C) Velocity of sound Iopic VIII: Difraction of Light: 33. Bending of light around the edges of a (A) Refraction (B) Polarization 34. Optical rotation a property of optically ac (A) Density (B) Viscosity 35. Using a graded index fiber, the time diff (A) 33 ns per 100 km (B) 33 ns per km 36. At some angle of incidence when the angle of incidence when the	on used to find the speed of light: (2 times) (C) $16fd$ (D) $\frac{16}{fd}$ The the fringe from bright to dark, the mirror (C) $\frac{\lambda}{2}$ (D) λ subtended by a side of the eight sided mirror (C) $\frac{\pi}{2}$ rad (D) $\frac{\pi}{6}$ rad I to find the: (B) Wavelength of sound (D) Velocity of light The obstacle is known as: (C) Diffraction (D) Interference (C) Concentration in solutions (D) Elasticity (C) 1 ns per km (D) 1 ns per 100 km
 (A) 16 fc (B) 1/16 fd 30.In Michelson interferometer to switch should be displaced by: (A) λ/4 (B) λ/3 31. In Michelson's experiment, the angle is: (A) π/8 rad (B) π/4 rad 32. Michelson interferometer can be used (A) Wavelength of light (C) Velocity of sound Iopic VIII: Difraction of Light: 33. Bending of light around the edges of a (A) Refraction (B) Polarization 34.Optical rotation a property of optically ac (A) Density (B) Viscosity 35. Using a graded index fiber, the time diff (A) 33 ns per 100 km (B) 33 ns per km 36. At some angle (B) Incident angle 	on used to find the speed of light: (2 times) (C) $16fd$ (D) $\frac{16}{fd}$ The the fringe from bright to dark, the mirror (C) $\frac{\lambda}{2}$ (D) λ subtended by a side of the eight sided mirror (C) $\frac{\pi}{2}$ rad (D) $\frac{\pi}{6}$ rad I to find the: (B) Wavelength of sound (D) Velocity of light The obstacle is known as: (C) Diffraction (D) Interference (C) Concentration in solutions (D) Elasticity (C) 1 ns per km (D) 1 ns per 100 km
 (A) 16fc (B) 1/16 fd 30.In Michelson interferometer to switch should be displaced by: (A) λ/4 (B) λ/3 31. In Michelson's experiment, the angle is: (A) π/8 rad (B) π/4 rad 32. Michelson interferometer can be used (A) Wavelength of light (C) Velocity of sound [Opic VIII: Difraction of Light] 33. Bending of light around the edges of a (A) Refraction (B) Polarization 34. Optical rotation a property of optically ac (A) Density (B) Viscosity 35. Using a graded index fiber, the time diff (A) 33 ns per 100 km (B) 33 ns per km 36. At some angle of incidence when the angle (A) Phase angle (B) Incident angle 37. Diffraction is a special type of: 	(C) 16fd (D) $\frac{16}{fd}$ The the fringe from bright to dark, the mirror (C) $\frac{\lambda}{2}$ (D) λ subtended by a side of the eight sided mirror (C) $\frac{\pi}{2}$ rad (D) $\frac{\pi}{6}$ rad (D) Velocity of light The obstacle is known as: (4 Times) (C) Diffraction (D) Interference (C) Concentration in solutions (D) Elasticity (C) 1 ns per km (D) 1 ns per 100 km (D) Refractive angle (C) Critical angle (C) Refractive angle (D) Critical angle
 (A) 16 fc (B) 1/16 fd 30.In Michelson interferometer to switch should be displaced by: (A) λ/4 (B) λ/3 31. In Michelson's experiment, the angle is: (A) π/8 rad (B) π/4 rad 32. Michelson interferometer can be used (A) Wavelength of light (C) Velocity of sound Iopic VIII: Difraction of Light: 33. Bending of light around the edges of a (A) Refraction (B) Polarization 34.Optical rotation a property of optically ac (A) Density (B) Viscosity 35. Using a graded index fiber, the time diff (A) 33 ns per 100 km (B) 33 ns per km 36. At some angle (B) Incident angle 	(C) 16fd (D) $\frac{16}{fd}$ The the fringe from bright to dark, the mirror (C) $\frac{\lambda}{2}$ (D) λ subtended by a side of the eight sided mirror (C) $\frac{\pi}{2}$ rad (D) $\frac{\pi}{6}$ rad (D) Velocity of light The obstacle is known as: (4 Times) (C) Diffraction (D) Interference (C) Concentration in solutions (D) Elasticity (C) 1 ns per km (D) 1 ns per 100 km (D) Refractive angle (C) Critical angle (C) Refractive angle (D) Critical angle

(A) increases (B) decreases 56. Which is not Optical Active:

(A) Sugar

(B) Tartaric

(C) Water

(D) becomes zero

(D) Sodium Chlorate

		ase of Vibration is call	
		(C) Diffraction	(D) Polarization
	ers glass, it suffers a c		1.33
(A) Frequency		(B) Wavelength	
(C) Velocity		(D) Both velocity and	
59. In a Michelson	interferometer by mo	oving the mirror throug	th a distance of $\lambda/4$.
The path differen	ence changes by:		(3 Times)
$(A)\frac{\lambda}{2}$	(B) λ	(C) $\frac{\lambda}{4}$	(D) 2 λ
60. When Newton	s Rings are seen thro	ugh the transmitted lig	
spot is:			,, the central
(A) Dark	(B) Blue	(C) Bright	(D) Red
		2019	(b) Neu
61. Bragg's equation	on is:		
(A) 2d sin $A = n^{\lambda}$	(B) d sin 0)	(2 Tin	nes)
62 Dhana diff	(b) a sine = n_{Λ}	(C) d sin $\theta = n \frac{\lambda}{2}$	(D) d sinθ = 2λ
(A) λ	e of 180° between tw	o waves is equal to a p	ath difference of:
1. 1	(D) A/Z	(C) \(\lambda/\Delta\)	/D/ 2.1./4
(A) Diffraction	llowings can not prod	luce colours with white	light?
(A) Diffaction	(B) Interference	(C) Polarization	(-1
	or which eison interfer	Ometer is mound a dist	ance of 0.5 mm, then
65. For which of th	of following sales	(C) 1000x10 ⁻⁷ m	(D) 5000x10 ⁻⁷ m
slit experiment		ill the fringe width be m	inimum in the double
(A) violt	(B) red		e de la companya de l
66. Soap film show	IS coloure due to	(C) green	(D) yellow
(A) Interference	(B) Diffractin	101 0	S
67. Polarization pr	oves that light waves	(C) Polarization	(D) Reflection
(A) Longitudinal	(B) Stationary		
		(C) Matter - 2021	(D) Transvers
68. In Michelson m	ethod time taken by	20/41	
2π	time taken by t	the rotational mirror to	rotate through an angle
8 (if f is the	frequency of rotation)	is:	
(A) $\frac{2\pi}{8}$. 1	×2	
(^) -8	(B) $\frac{1}{2f}$	$(C)\frac{1}{8f}$	(D) 1
69. The regular ar	rray of atoms in a or	81	$\frac{6f}{6f}$
spacing of the	order of:	ystal forms a natural o	diffraction grating with
(A) $10^{-8} m$	(B) 10 ⁻⁹ m	Ø (a) . = 10	
70. A Diffraction gi	rating has 3000 lines in	er centimeter, its gratir	(D) $10^{-11}m$
(A) $3.33 \times 10^{-4} cm$	(B) 3.33m	(C) 222	g element is
	the Sun reaches the E	(1)))))	(D) 3.33cm
(A) Circular wave fro	nts		
(C) Spherical wave fr	onts	(B) Plane wave fronts	
72. In Michelson i	nterferometer a fring	(D) Elliptical wave from is shifted each time	its .
through:		, time	the mirror is displaced
	ι_, λ	λ	the state of the s
(A) λ	(B) $\frac{\lambda}{a}$	(c) $\frac{\lambda}{1}$	(D) 7050

ANSWERS OF THE MULTIPLE CHOICE QUESTIONS

									1010	770	A-21-7			
1	2	3	4	5	6	7	8	0	10	11	12	13	14	15
C	В	В	Α	С	В	<u></u>		9	10	11_				В
16	17	18	19	_		C	C,	D	Α	C	Α	С	С	
				20	21	22	23	24	25	26	27	28	29	30
В	С	С	C	D	В	Α	В							Α
31	32	33	34	25			В	D	В	_ B	Α	С		
		_		35	36	37	³⁸	39	40	41	42	43	44	45
B	Α.	С	С	С	D	В	Α	Α	В	D		В	Α	D.
46	47	48	49	50	51					_			-	
_	-		-		21	52	53	- 54	55	56	57	58	59	60 ·
D	D	В	D	C	Α	В	Α	В	В	С	Α	D	A	. C
61	62	63	64	65	66	67	68	69	70	71	72	-		
C	В	С	Α	Α	Α	D	C	05	Δ	B	R	35		٠

SHORT QUESTIONS OF CHAPTER-9 IN ALL PUNJAB BOARDS 2011-2021

Topic : wavetronsts:

Under what conditions two or more sources of light behave as coherent (15 Times)

Two or more sources of light behave as coherent sources if Ans:

They emit monochromatic wave. i. ii. They are phase coherent.

2. Define wave fronts, also give its types.

Such a surface on which all the points have same phase of vibration is known as Ans: wavefront.

It is of two types.

i. Spherical wavefront Plane wavefront Ιİ.

3. Define wave front and spherical wave front.

Wave front: Such a surface on which all the points have same phase of vibration Ans: is known as wavefront.

Spherical wave fronts: If a point source is sending out waves in three dimensions, the wave fronts are spheres centered on the source. Such wave fronts are called a spherical wave fronts.

What are coherent sources? Under what conditions two or more sources behave 4. as coherent sources?

Coherent sources: The monochromatic sources of light which emit waves having a constant phase difference are called coherent sources.

Conditions: Two or more sources of light can only behave as coherent sources if they have no phase difference or have a constant phase difference and same wavelength. Two independent light sources are never coherent as each source emits waves with random phases.

A common method for producing two coherent light sources is to use monochromatic source to illuminate a screen containing two slits, the light emerging from both the slits in this way is coherent.

What do you mean by the term wavefront and ray of light? 5. Ans: Such a surface on which all the points have same phase of vibration is known as

A line normal to wavefront including the direction of motion is called a ray of light.

What do you mean by coherent sources? Explain a common method for 6. producing two coherent sources.

The monochromatic sources of light which emit waves, having a constant phase-Ans: difference are called coherent sources.

A common method of producing two coherent light beams is to use a monochromatic source to illuminate a screen containing two small holes, usually in the shape of slits. The light emerging from the two slits is coherent because a in the snape of sitts. The original beam and two slits serve only to split it into single source produces the original beam and two slits serve only to split it into two parts.

7. What is the usual way to obtain plane wavefront from a point source?

Ans: A usual way to obtain a plane wavefront is to place a point source of light at the focus of a convex lens. The rays coming out of the lens will constitute plane

How coherent light beams can be produced? Explain. . 8.

Ans: A monochromatic source is used to illuminate a screen containing two small holes (slits). The light emerging from the two slits is coherent because a single source produces the original beam and two slits serve only to split it into two parts.

9. How does one can obtain a plane wave?

A usual way to obtain a plane wave is to place a point source of light at the focus Ans: of a convex lens. The rays coming out of the lens will constitute plane waves.

10. Define Ray of Light and Beam of Light.

A line normal to the wavefront, showing the direction of propagation of light is Ans:

A group of parallel rays of light is called a beam of light.

Topic II: Huygen's Principle:

Write two steps of Huygens's principle. 11.

(10 Times)

OR State Huygen's principle. Ans:

(5 Times) i) Each point of a wave front may be considered as a source of secondary wavelets.

The new position of the wave front after a certain interval of time can be iii) found by constructing a surface that touches all the secondary wavelets.

For what purpose Huygen's Principle is used? 12.

Knowing the shape and location of a wavefront at any instant t, Huygen's principle enables us to determine the shape and location of the new wavefront at a later time $t + \Delta t$.

The points on a Huygen's wavefront which send out secondary wavelets provide coherent sources of light.

Topic III: Interference of Light:

Can visible light produce interference fringes? Explain. 13. Ans:

Yes, visible light or white light can produce interference fringes. But each color will produce its own interference fringe pattern. These patterns overlap to give rise to a resultant diffused coloured interference pattern. 14.

If white light is incident on a film of irregular thickness at all possible angles, what will be the pattern of interference fringes? Explain your answer.

If white light is incident on a film of irregular thickness at all possible angles, we Ans: should consider the interference pattern due to each spectral colour separately. If at a certain place condition of destructive interference of one colour is satisfied then that portion of film will exhibit the remaining constituent colours of white

What are conditions for detectable interference of light? 15.

(3 Times)

For detectable interference, light beam should be Monochromatic

ii. Coherent

Topic IV: Young Double Slit Experiment:

Explain whether the Young's experiment is an experiment for studying 16. interference or diffraction effect of light.

Mainly, Young's experiment was performed to study the interference of light. Ans: However, it also involves diffraction. So diffraction can also be studied by this experiment because when light passes through the slit, it bends towards the

What are dependence factors of fringe spacing in Young's double slit 17. experiment?

On what factors, the distance between adjeacent bright fringes in Young's OR double slit experiment depends? How will you increase the fringe width in Young's double slit experiment? OR

Since Ans:

$$\Delta y = \frac{\lambda L}{d}$$

Fringe spacing depends upon

ii. Distance between slits iii. Separation of the slits i. Wavelength In Young's experiment, one of the slits is covered with blue filter and other 18. with red filter, what would be the pattern of light intensity on the screen? (3 Times)

No interference pattern will be observed because blue and red lights are of Ans: different wavelengths. So the sources of light will not be coherent.

Find out the fringe spacing between two consecutive bright fringes. 19.

173

In order to determine the distance between two adjacent bright fringes on the Ans: screen, mth and (m + 1)th fringes are considered.

$$y_{m} = m \frac{\lambda L}{d}$$
And $y_{m+1} = (m+1) \frac{\lambda L}{d}$

If the distance between the adjacent bright fringes is Δy , then

$$\Delta y = y_{m+1} - y_m = (m+1)\frac{\lambda L}{d} - m\frac{\lambda L}{d}$$

Therefore

$$\Delta y = \frac{\lambda L}{d}$$

How can the distance between interference fringes affect by the separation between the slits of Young's experiment? Can fringes disappear? (6 Times)

Since Ans:

$$\Delta y = \frac{\lambda L}{d}$$

Fringe spacing varies inversely with distance. If the separation is too large, then

How the distance between interference fringes will be affected if the distance between the slits in Young's experiment is doubled.? 21.

Distance between interference fringes is given as: Ans:

$$\Delta Y = \frac{\lambda L}{d}$$

This Formula shows that if the distance between the slits "d" is doubled then fringe spacing " ΔY " will be halved.

If a wavelength of light 600 nm illuminates two slits 0.5 mm apart. The distance

between the slits and screen is 200 cm. Calculate its fringe spacing. 22.

Ans:
$$\lambda = 600 \text{ } nm = 600 \times 10^{-9} \text{ } m$$

 $d = 0.5 \text{ } mm = 0.5 \times 10^{-3} \text{ } m$
 $L = 200 \text{ } cm = 2m$
 $\Delta y = ?$
We know that
 $\Delta y = \frac{\lambda L}{d}$
 $= \frac{600 \times 10^{-9} \times 2}{0.5 \times 10^{-3}}$
 $= 2.4 \times 10^{-3} \text{ } m$

 $= 2.4 \, mm$

Topic V: Interference in thin Films:

What condition must be met by interfering beams to observe the phenomena (2 Times) of interference?

The following conditions must be met, in order to observe the phenomenon. Ans: The interfering beams must be monochromatic, that is, of a single wavelength. ١.

11. The interfering beams of light must be coherent.

24. An oil film spreading over a wet footpath shows colors. Explain how does it (20 Times) happen?

Ans: It happens due to interference of light waves through thin oil fill. When light beam is incident, a part of it is reflected from the upper surface of oil film and other is reflected from the lower part of thin film. Since the two reflected beams are coherent being part of the same beam. Sun light consists of seven colours and each colour refracts differently. Hence, after reflection different colours interfere at different points as compared to others and oil film over at wet foot path shows colours.

25. How interference in thin film produces?

Ans: It happens due to interference of light waves through thin oil film. When light beam is incident, a part of it is reflected from the upper surface of oil film and other is reflected from the lower part of thin film. Since the two reflected beams are coherent being part of the same beam and sunlight consists of seven colors and each color refracts differently hence after reflection different colors interfere at different points as compared to others and an oil film over a wet footpath shows colors.

Topic VI: Newton's Rings:

26. The center of Newton's ring is dark. Why? The thickness of the film is effectively zero at the point of contact of the lens and Ans: the glass plate. But due to reflection at the lower surface from denser medium,

an additional path difference of $\frac{\lambda}{2}$ is introduced. It results in destructive interference and the center of Newton's ring becomes dark.

Can you obtain Newton's rings with transmitted light? If yes, would the pattern 27. be different from that obtained with reflected light?

Yes, Newton's rings can be obtained with transmitted light. But because of phase Ans: change of 180°, the fringe pattern is opposite to the reflected pattern and the

What are Newton's rings? 28.

When a plano-convex lens of long focal length is placed in contact with a plane Ans: glass plate, a thin air film is enclosed between them to form circular dark and 29.

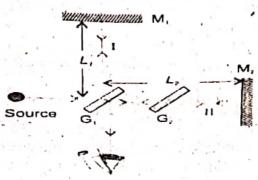
In Newton's rings, why are the fringes circular?

The thickness of the air film between plano-convex lens and plane glass plate is Ans: almost zero at the point of contact "o" and gradually increases as we proceed towards the periphery of the lens. Thus, points where the thickness of air film is . constant will lie on a circle with "o" as centre. That is why circular fringes are

Topic VII: Michelson's Interferometer:

What is Michelson's interferometer? Also write its working principle. 30.

Michelson's interferometer is an instrument that is capable of measuring distance with extremely high precision. Its working is based on interference. When light from a single source splits up two parts and then interfere, it forms an interference pattern.


31.

What is the contribution of Michelson to measure the length of standard meter using interferometer?

Michelson measured the length of the standard meter in terms of wavelength of red cadmium light and showed that the standard meter is equal to 1553163.5 wavelengths of this light.

Ans:

Describe the construction of Michelson's interferometer with the help of diagram.

Here

S is a source of monochromatic light,

G1 is partially silvered glass plate,

G2 is simple glass plate for compensation,

M₁ is a moveable mirror and M₂ is a fixed mirror

Topic VIII: Difraction of Light:

(2 Times)

What is diffraction of light? The slight bending of light as it passes around the edge of an object is called Ans: diffraction of light.

What is difference between interference and diffraction fringes?

Interference fringes: The superposition of two waves having same frequency 34. and traveling in same direction results in bright and dark fringes is called Ans:

Diffraction fringes: The fringes formed due to the bending of light around edges

and corners are called diffraction fringes. How would you manage to get more orders of spectra using a diffraction (23 Times) 35. grating?

The grating equation is Ans:

 $d\sin\theta = n\lambda$

Thus by increasing the spacing between lines and using light of small wavelength. We can get more orders of spectra using diffraction grating.

What is diffraction grating, write equation? 36.

(4 Times)

A glass plate having a large number of close parallel equidistant lines ruled over the plate mechanically is called diffraction grating. For diffraction grating,

Where "d sin θ " is path difference, 'n' is order of image and ' λ ' is wavelength. The slight bending of light as it passes around the obstacle or edge of an object is

What is the difference between interference and Diffraction? Interference: When two identical light waves travelling in the same direction are superimposed to each other in such a way that they reinforce each other at some 37. points while at some points they cancel the effect of each other. Such Ans:

Diffraction: The property of bending of waves around obstacles and spreading of

waves into the geometrical shadow of an obstacle is called diffraction. A typical diffraction grating has 5000 lines per centimeter. What will be the

Grating Element of this diffraction grating in meters? 38.

L = 1 cm = 0.01 mGiven that Ans:

Grating element is given as

$$d = \frac{L}{N \cdot 0.01 \, \text{m}}$$

$$d = \frac{5000}{5000} = 2 \times 10^{-6} \, \text{m}$$

Hold two fingers close together to form a slit. Look at the light bulb through 39. the slit pattern of light being seen. What phenomenon is used in this case? Define this phenomenon.

Diffraction is used in this case. The property of bending of light around obstacles Ans: and spreading of light waves into the geometrical shadow of an obstacle is called diffraction.

Topic IX: Difraction of X-Rays by Crystals:

Why diffraction grating cannot be used for X – Rays diffraction?

In order to observe the effects of diffraction, the grating spacing must be of the Ans: order of wavelength of the incident light. X-rays are of much shorter wavelength of the order of 10-10 m. The regular array

of atoms in a crystal forms a natural diffraction grating with spacing ≈ 10-10 m which is not available in other diffraction grating.

41. Why X-rays can't not be diffracted by ordinary glass grating? Ans: This is because X-rays has much shorter wavelength λ of the order of $10^{-10}m$. In order to observe the effects of diffraction, the grating spacing must be of the order of the wavelength of the radiation used. Therefore, crystals are used for Xrays diffraction.

42. Write two uses of X-rays diffraction by crystals. Ans:

X-ray diffraction has been very useful in determining the structure of biologically important molecules such as hemoglobin and double helix structure of DNA. 43.

What is Bragg's law? Derive Bragg's equation.

"Bragg's law or Brag's condition:

Two beams with identical wavelength and phase approach a crystalline solid and are scattered off two different atoms within it.

The beam reflected from lower plane travels some extra distance as compared to the beam reflected from the upper plane. When a constructive interference occurs, the effective path difference between two beams 2 dsin heta is equal to an integral multiple of wavelength.

Thus $2dsin\theta = n\lambda$

Where n is the order of reflection.

This equation is known as Bragg's equation.

Topic X: Polarization:

What is polarization of light? 44.

The phenomenon in which the vibration of waves can be oriented to any one Ans: direction, that may be vertical, horizontal, or any other direction is called 45.

How would you distinguish between un-polarized and plane polarized lights?

Un-polarized lights: A beam of ordinary light consists of electric and magnetic Ans: vibrations which are perpendicular to the direction of propagation. It is called

Plane polarized lights: The beam of light in which all vibrations are confined to one plane of vibration is called plane polarized light.

Why the polaroid sun glasses are better than ordinary sun glasses? (17 Times) 46. Polaroid sun glasses are better than ordinary sun glasses because they reduce Ans: the glare of light entering into the eye as a result of polarization. 47.

Write any two processes to obtain plane polarized light? The two processes to obtain plane polarized light are: Ans: (3 Times)

Selective absorption

The selective absorption method is the most common method to obtain plane polarized light by using certain types of materials called dichroic substances. These materials transmit only those waves, whose vibrations are parallel to a particular direction and will absorb those waves whose vibrations are in other directions. One such commercial polarizing material is a Polaroid.

ii. Reflection from different surfaces Reflection of light from water, glass, snow and rough road surfaces, for larger angles of incidences, produces glare. Since the reflected light is partially polarized.

Define optical rotation. Give its practical use. 48.

When a plane polarized light is passed through certain crystals, they rotate the Ans: plane of polarization. It is called optical rotation. Organic solutions such as sugar, tartaric acid etc., show optical rotation which is used to determine their concentration in the solutions.

Give the list of two substance which shows optical rotation when they are in 49. solution.

Sugar and tartaric acid show optical rotation when they are in solution. Ans:

Define polarization of light. 50.-

The phenomenon in which the vibration of waves can be oriented to any one Ans: direction (plane), that may be vertical, horizontal or any other direction is called polarization of light.

Write down selective absorption method to obtain plane polarized light from 51. ordinary light.

Selective absorption: The selective absorption method is the most common Ans: method to obtain plane polarized light by using certain types of materials called dichroic substances. These materials transmit only those waves, whose vibrations are parallel to a particular direction and will absorb those waves whose vibrations are in other directions. One such commercial polarizing material is a Polaroid.

Write the names of any four processes to obtain plane polarized beam of light 52. from un-polarized light.

This can be achieved by four processes such as Ans:

(i) Selective absorption

(ii) Reflection from different surfaces

(iii) Refraction through crystals

(iv) Scattering by small particles.

Can you obtain plane polarized light from un-polarized light? If your answer is 53. yes, write the name of two processes by which plane polarized light is obtained.

Ans: Yes, we can obtain plane polarized light from un-polarized light.

This can be achieved by processes such as

(i) Selective absorption

(ii) Reflection from different surfaces

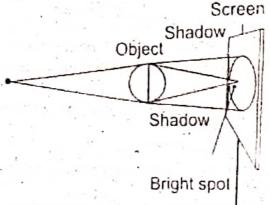
2021

What are Newton's ring? How they are formed? 54.

When a plano-convex lens of long focal length is placed in contact with a plane Ans: glass plate, a thin air film is enclosed between them to form circular dark and bright fringes known as Newton's rings.

What is meant by fringe spacing? 55.

The distance between two consecutive dark or bright fringes is called fringe Ans: spacing. It is calculated by:


Fringe spacing varies inversely with distance. If the separation is too large, then fringes will disappear.

What is meant by diffraction of light? Explain with an example. 56.

The bending of light around obstacles and spreading of light waves into the geometrical Ans: shadow of an obstacle is called diffraction.

Examples of diffraction of light:

Consider a small and smooth steel ball of about 3 mm in diameter is illuminated by a point source light. The shadow of the spherical object is not completely dark but has a small bright spot at its center. According to the Huygen's principle, each point on the rim of the sphere behaves as a source of secondary wavelet which illuminate the central region of the shadow.

LONG QUESTIONS OF CHAPTER-9 IN ALL PUNJAB BOARDS 2011-2021

Topic IV: Young Double Slit Experiment:

- Explain Young's Double Slit Experiment to study the phenomenon of interference of light.
- 2. Explain Young's double slits experiment. Derive the relation for position of mth bright and (2 Times) dark fringe from the center of the screen. (2 Times)
- 3. What is interference of light waves? Descirbe Young's double slit experiment.
- 4. Explain young's double slit experiment and determine the relation for linear distance on the screen between adjacent bright fringes. (3 Times)

Topic VI: Newton's Rings:

5. What are Newton's rings? Describe the experiment of producing Newton's rings. Why does the central spot of Newton's rings look dark?

Topic VII: Michelson's Interferometer:

- 6. What is Michelson's interferometer? Explain its working and derive its equation.
- 7. Desribe the principle, construction and working of Michelson's interferometer. How can you find the wavelength of light used?
- 8. Discuss in detail the experimental arrangement made by Michelson to find speed of light and

Topic VIII: Difraction of Light:

9. What is diffraction grating? Explain diffraction using diffracting grating.

Topic IX: Difraction of X-Rays by Crystals:

- 10. Explain the diffraction of x-rays by crystals. What are uses of diffraction of x-rays? (2 Times)
- Explain the diffraction of x-rays by crystals.
- 12. Define diffraction of light. Explain diffraction of x-rays by crystal and derive Bragg's equation.

NUMERICAL PROBLEMS OF CHAPTER-9 IN ALL PUNJAB BOARDS 2011-2021

Topic III: Interference of Light:

Yellow sodium light of wavelength $589\ nm$, emitted by a single source passes through two narrow slits $1.00\ mm$ apart. The interference pattern is observed on a screen 225 cm away. How far apart are two adjacent bright fringes?

sol:

$$\lambda = 589 \text{ } nm = 589 \times 10^{-9} \text{ } m$$

$$d = 1 \text{ } mm = 1 \times 10^{-3} \text{ } m$$

$$L = 225 \text{ } cm = 2.25 \text{ } m$$

$$\Delta y = ?$$

$$\Delta y = \frac{\lambda L}{r}$$

We know that

$$\Delta y = \frac{589 \times 10^{-9} \times 2.25}{1 \times 10^{-3}} = 1.33 \times 10^{-3} \ m = 1.33 \ mm$$

Topic IV: Young Double Slit Experiment:

2. In Young's double slit experiment, the second order maximum occur at $\theta =$ 0.25° the wavelength is $650 \ nm$. Determine the slit separation. (11 Times)

$$\lambda = 650 \text{ } nm = 650 \times 10^{-9} \text{ } m$$

$$m = 2$$

$$\theta = 0.25^{\circ}$$

$$d = ?$$
Since
$$d = \frac{m\lambda}{\sin \theta}$$

$$d = \frac{2 \times 650 \times 10^{-9}}{\sin 0.25^{\circ}}$$

$$d = 2.98 \times 10^{-4} \text{ } m$$

 $d = 3 \times 10^{-4} m = 0.3 \times 10^{-3} m = 0.3 mm$

The distance between the slits in Young's double slip experiment is 0.25cm. Interference fringes are formed on a screen placed at a distance of 100cm from the slits. The distance of third dark fringe from the central bright fringe is 0.059cm. Find the wavelength of the incident light.

Sol:
$$d = 0.25cm = 0.025m$$

 $L = 100cm = 1m$
 $Y = 0.059cm = 0.0059m$
 $\lambda = ?$

· For the 3rd dark fringe, m=2 for dark fringe

$$Y = \left(m + \frac{1}{2}\right) \frac{\lambda L}{d}$$
Or
$$\lambda = \frac{Yd}{L\left(m + \frac{1}{2}\right)}$$

Putting values, 0.00059×0.0025 $\lambda = 5.9 \times 10^{-7} m$

or
$$\lambda = 590 \times 10^{-9} m$$

or $\lambda = 590 nm$

Topic V: Interference in thin Films:

4. Calculate the wavelength of light which illuminates two slits 0.5 mm apart and produces an interference pattern on a screen placed 200 cm away from the slits. The first Bright Fringe is observed at a distance of 2.4 mm from the central fringe.

Sol:
$$L = 200cm = 2m$$

 $Y = 2.40 \times 10^{-3} m$
 $m = 1$
Wavelength of light = $\lambda = ?$
 $Y = m \frac{\lambda L}{2}$

$$Y = m \frac{\lambda L}{d}$$

$$\lambda = \frac{yd}{mL}$$

$$= \frac{1.20 \times 10^{-3} \times 0.5 \times 10^{-3}}{1 \times 2}$$

=
$$1.20 \times 0.5 \times 10^{-6}$$

= $0.6 \times 10^{-6} m$
 $\lambda = 600 nm$

Topic VIII: Difraction of Light:

5. A light is incident normally on a grating which has 2500 lines per cm. Compute the wavelength of a spectral line for which the deviation in second order is 15°.

Sol:

$$N = 2500$$
 lines per cm = 250000 lines per m

Since
$$n = 2$$

$$\theta = 15^{\circ}$$

$$\lambda = ?$$

$$d \sin \theta = n\lambda$$

$$\lambda = \frac{d \sin \theta}{n}$$
Putting $d = \frac{1}{N}$, we get
$$\lambda = \frac{1}{N} \frac{\sin \theta}{n}$$

 $\lambda = \frac{1}{250000} \frac{\sin 15^{\circ}}{2}$ = 5.18 × 10⁻⁷ m = 5.18 × 10⁻⁸

 $\lambda = 5.18 \times 10^{-7} \ m = 518 \times 10^{-9} \ m = 518 \ nm$ Sodium light ($\lambda = 589 \ nm$) in incident normally on a grating having 3000 lines per cm. What is the highest order of the spectrum obtained with the grating?

(6 Times)

Sol:

6.

$$\lambda = 589 \text{ nm} = 589 \times 10^{-9} \text{ m}$$

$$N = 3000 \text{ lines per cm}$$

$$N = 300000 \text{ lines per m}$$

$$\theta = 90^{\circ}$$

$$n = ?$$

$$d \sin \theta = n\lambda$$

$$n = \frac{d \sin \theta}{d \sin \theta}$$

Since

$$n = \frac{d\sin\theta}{\lambda}$$

Putting $d = \frac{1}{N}$, we get

$$n = \frac{1}{N} \frac{\sin \theta}{\lambda}$$

$$n = \frac{1}{300000} \frac{\sin 90^{\circ}}{589 \times 10^{-9}} = 5.66$$

Hence 5th order of spectrum is the highest one.

X-rays wavelength of 0.150 nm is observed to undergo a first order reflection at a brag angle of 13.3° from a quartz crystal. What is the interplanar spacing of the reflecting places in the crystal? (2 times)

$$\lambda = 0.150 \text{ nm} = 0.150 \times 10^{-9} \text{ m}$$

 $n = 1$, $\theta = 13.3^{\circ}$
 $d = ?$

According to Bragg's law

$$2d\sin\theta=n\lambda$$

$$d = \frac{n\lambda}{2\sin\theta}$$
$$d = \frac{1 \times 0.150 \times 10^{-9}}{2\sin 13.3^{\circ}}$$

$$d = 3.26 \times 10^{-10} m = 0.326 \times 10^{-9} m = 0.326 nm$$

Blue light of wavelength 480 nm illuminates a diffraction grating, the second order image is formed at an angle of 30° from central image. How many lines in a centimeter of the grating have been ruled?

$$\lambda = 480nm = 480 \times 10^{-9} m$$

$$n=2$$

$$\theta = 30^{\circ}$$

$$N = ?$$

$$d\sin\theta = n\lambda$$

$$\frac{1}{N}\sin\theta = n\lambda \quad \left(As \quad d = \frac{1}{N} \right)$$

$$N = \frac{\sin \theta}{n\lambda}$$

$$N = \frac{n\lambda}{\sin 30^{\circ}}$$

$$N = \frac{0.5}{100}$$

$$N = \frac{1}{2 \times 480 \times 10^{-9}}$$

$$N = 5.2 \times 10^5$$
 lines per meter

$$N = 5.2 \times 10^3$$
 lines per cm

A second order spectrum is formed at an angle of 38.0°. When light falls normally on a diffraction grating having 5400 lines per centimeter. Determine wavelength of the light used.

Ans:

$$\theta = 38.0^{\circ}$$

$$N = 5400 \text{ lines /cm}$$

$$= 540000 lines / m$$

$$n=2$$
 $\lambda=?$

For diffraction grating

$$d \sin \theta = n\lambda$$

$$d \sin \theta = h\lambda$$

$$Or \quad \lambda = \frac{d \sin \theta}{n}$$

But
$$d = \frac{1}{N}$$

Thus
$$\lambda = \frac{\sin \theta}{Nn}$$

$$=\frac{540000 \times 2}{540000 \times 2}$$

$$\lambda = 570 \times 10^{-9} \, m$$

$$\lambda = 570 nm$$

OBJECTIVES (MCQ'S) OF CHAPTER-10 IN ALL PUNJAB BOARD 2011-2021

Topic I: Least Distance of distinct visi	oni	rs to be disting.
1.The minimum distance from the eye at w	hich an object appear	
(0) 15	(C) 25 cm	(D) 30 cm
(A) 15 cm (B) 20 cm	(0) ==	(2 Times)
2. The least distance of distinct vision is:	(C) 25 cm	(D) 50 cm
(A) 5 cm (B) 10 cm 3.If d is the least distance of distinct vision	then the magnificat	
focal length f will be:	, then the mag	(2 Times)
d . d	f	f
(A) $1 + \frac{d}{f}$ (B) $1 - \frac{d}{f}$	(C) $1 + \frac{3}{4}$	(D) $1 - \frac{f}{d}$
		a a famous 8
4.A device used for viewing distant objects	is called:	(D) Man-16 1
(A) Telescope (B) Spectrometer	(C) Microscope	(D) Magnifying glass
5.Least distance of distinct vision:	(5) 5	
(A) Increase with age (C) Remains constant with age 6. The distance of near point from the eye is	(B) Decrease with age	
C) Remains constant with age	(D) Becomes infinite a	after 60 years
and an action of the all points it offices ever	S about.	
(A) 25 cm (B) 25 dm	(C) 10 cm	(D) 25 m
Topic II: Magnifying Power and Reso	lving Power of Opt	ical Instruments
7.11 N is the number of rulings on the gr	ating then the resolv	ing nower in the mit
order diffraction is equal to:	- Ing the tresort	(3 Times)
(A) $R = Nm$ (B) $R = N/m$	(C) P = 1/Nm	6.3
8. The ratio of the size of image to the size		(D) R = m/N
(A) Focal length (B) Visual length	(C) Paralis called:	6
9. The magnification of a convex lens of f= !	(C) Resolving power	(D) Magnification
(A) 3 (B) 5	ocm and d=25 cm is:	5
	(C) 6	(D) 20
10. The magnification of a convex lens of fo	cal length 10cm is:	
11 If an abject is at	(C) 4.5	(D) 5
(A) 2.5 (B) 3.5 11.If an object is placed in between focus the image formed by lens is:	point and optical ce	nter of a convex lens
(A) Post invested (D) (D)	40	יינכו טו ע כטוויט.
(A) Real inverted (B) Virtual diminished 12.If a convex lens is used as a magn	(C) Virtual inverted	(D) Vietual aracted
12.If a convex lens is used as a magnification that has	nifying glass which	(D) VITtual elected
magnification that has	. S Biggs, Willeh	iens will give like
(A) Short size (B) long focal length	(C) Large size	and the second
13. Rayleigh formula for resolving power:	(-) Targe size	(D) short focal length
(A) $R = \frac{1.22}{D}$ (B) $R = \frac{1.22D}{D}$	ISE D	
14. The detector in Photo – Phone is made	(C) $R = D/1.22 \times (1.22 \times 1.00)$	D) $R = \frac{\lambda}{1.22D}$
	ap of.	71.220
(A) Cadmium (B) Germanium 15. A convex lens acts as diverging lens if the (B) 2F	(C) Selenium	(D) Ciliana
(A) F (D) 2C	ne object is placed as	(D) Silicon
A STATE OF THE PROPERTY OF THE	(C) Between f and 2F	(D)
Topic III: Microscope:	, and ZF	(D) Within the F
16.The final image formed by simple micro	Scone is:	
		(3 Times)
17.If a single convex lens is placed close to	eve. then it	(D) real and inverted
(A) Virtual and inverted (B) Virtual and erect 17.If a single convex lens is placed close to (A) Telescope (B) Microscope	(C) Magnife is being us	sed as:
18. Which communication can ensure less	(C) Magnifying glass	(D) None of these
18. Which communication can ensure less compound microscope:	and more	details to be seen py
A) A wider objective and red light		
C) A wider eye piece and red light	(B) a wider objective a	and blue light
-1	(D) a wider eye piece	and blue light

40.For glass - air	boundary, the value	of critical angle is:	(0) 42 00
(A) 41.4°	(B) 41.6°	(C) 41.8°	(D) 42.2°
(A) Long distance	ep index fiber is usef	ul for:	(D) Indiate
42. Information	(B) Short distance	e (C) No distance	(D) Infinite distance
(A) Capacity	arrying capacity of or	otical fiber is called:	(2 Times)
43. A layer over	(B) Band width	(C) Immunity	(D) Ability
(A) Jacket	he central core of the	e fibre is called:	(D)Dubb
44. If the speed o	(B) Plastic	(C) Cladding , then its velocity in a n	(D)Rubber
index 1.3 is:	g.ic iii vacuum is C	, then its velocity in a n	nedidin of refractive
(A) 1.3 c	13		
(1) 1.5 ((B) $\frac{1.3}{c}$	(c) $\frac{c}{1.3}$	(D) c
11.0	, c		
45. The magni	fication of	2018	
(a) 1	ilication of a convex l	ens of focal length 5 cm	n is equal to:
5	(b) 5	(c) 6	(d) 25
46. When an object	t is placed with a		(4) 25
(a) Real	(b) Invested	focal point of a convex	lens then its image will be:
47	will traval fact	(c) Virtual	(d) Of same size
(A) Ultraviolet ligh	t (B) Visible light	an others through an o (C) Infrared light	ptical fibre.
48. The first perso	n who attempted to	(C) Infrared light measure the speed of I	(D) White light
(A) Michelson	(B) Huygen	(C) Gailes	ight was:
49. The magnifying	P nower of an and	(C) Gaileo	(D) Newton
(A) 10 cm	0 cm then what is the	(C) Gaileo omical telescope is 10. e cocal lenth of eye-pie	if the focal length of
(A) 10 CIII	(D) 100		ce:
f normal adju	stment of length of t	elescono ico	(D) 5 cm
(A) $\frac{f_o}{f_o}$	(B) $\frac{f_c}{f_o}$. d	8.
f _e	$\frac{(b)}{f_a}$	(C) $1 + \frac{a}{c}$	(D) f _o + f _e
51. For normal adj	ustment, what is the	longth of	
lengths of obje	ctive and eye piece a	f _e length of astronomica re 100 cm and 20 cm re (C) 5 cm	I telescope if focal
(A) 100 cm	(B) 20 cm	(C) 5 cm	espectively?
(A) 300 km	al fiber systems, rene	aters are placed as	(D) 120 cm
(~) 200 KIII	(B) 100 m	(C) 30 km	100
			(D) 100 km
53. In multimode st	ep index fiber the	2019 alue of refractive Index (C) 1.67	
(A) 1.33	(B) 1.52	alue of refractive index	Of core is:
and a more mode	step index fiber core	(C) 1.67	(D) 1.48
(A) 5 μm	(B) 5 nm	(C) 5 -	
55. The image form	ed by eyepiece of co	(C) 5 pm mpound microscope is	(D) 5 cm
(C) Vistarial magnif	ied	(B) Pool on the list	:
(C) Virtual and enlar	ge	(B) Real and diminis	shed
30. If a convex Lens	of focal length "F" is	cut into two ld	nished
diameter, the fo	cal length of each ha	(D) Virtual and diministration	halves along the Lens
· ' 2'	(D) 2f		
57. Magnifying power	er of telescone is	(C) $\frac{1}{2}$	(D) f
/ 4 \ 7			
	(B) f _o - f _e	(C) $\frac{f_0}{f_0}$	(D) le
58. Microphone conv	erts.	7.0	$(D)\frac{f_e}{f_o}$
(A) electrical signal in	nto sound signal	(B) electrical signal	
(C) light signal into el	ectrical signal	(B) electrical signal into (D) sound signal into of focal length 10cm in (B)	nto light signal
(A) 7	ower of convex lens	(D) sound signal into	electrical signal
(A) /	(B) 9.6	'(C) 3.5	J
	167		(D) 11

- (D) N m
- (D) 30 cm

(A) 1.5

(D).1.2

70. Final image formed by compound microscope is:

- (A) Real: Inverted; Magnified
- (B) Virtual; Erect; Magnified
- (C) Real; Erect; Diminished
- (D) Virtual; Inverted; Diminished

71. Venturi relation is given by:

(A)
$$P_1 + P_2 = \frac{1}{2} \rho v_2^2$$

(B)
$$P_1 - P_2 = \frac{1}{2} \rho v_2^2$$

(C)
$$P_1 + P_2 = \frac{1}{2} \rho v_2$$

(D)
$$P_1 - P_2 = \frac{1}{2} \rho^2 v_2$$

72. Compound microscope consist of:

(A) Two convex lens:

- (B) Two concave lens
- (C) Convex lens and concave mirror
- (D) Concave lens and convex mirror

73. A Telescope with objective of focal length 40 cm and evepiece of focal length 5 cm, when focused for infinity has length equal to

- (A) 35 cm
- (B) 8 cm
- (C) 45 cm
- (D) 200 cm

ANSWERS OF THE MULTIPLE CHOICE QUESTIONS 15 16 12 13 14 11 9 10 8 7 6 4 5 2 3 В C C D C В D D D Α Α В C C Α 31 32 28 29 30 27 26 25 24 23 22 21 20 17 18 19 C. Α C В Α D В Α A D C В В Α Α 47 48 45 46 41 42 43 44 40 39 38 37 33 34 35 36 C C C C C C В C В Α Α C, D A В В 58 59 60 61 62 63 64 57 55 56 54 53 49 52 50 51 C C C D C C В С Α В Α D D D 73 71 72 70 69 65 68 66 67 С В В В C D

SHORT QUESTIONS OF CHAPTER-10 IN ALL PUNJAB BOARDS 2011-2021

Topic I: Least Distance of distinct vision:

What is the near point? Give its numerical value?

The minimum distance from the eye at which an object appears to be distinct is Ans: called near point or least distance of distinct vision. Its numerical value is 25 cm.

The location of the near point, however, changes with age.

2. Define magnification.

The size of the object goes on increasing, when the object brought from a far off Ans: point to the focus of the lens. This phenomenon of enlargement is called magnification. It is the ratio of size of image to the size of object.

3: Why is a Convex Lens of small focal length preferred for a magnifying glass?

Ans: A Convex Lens of small focal length is preferred for a magnifying glass because for high angular magnification the focal length should be small. Magnification can be found by using the equation M = 1 +

4. What is angular magnification?

Ans: Angular magnification or magnifying power of an optical instrument means how large or magnified is the image formed by the instrument.

5. Define resolving power of an optical instrument.

Ans: The resolving power of an instrument is its ability to reveal the minor details of an object under examination. It is measured in terms of minimum angle.

6. Describe with the help of ray diagrams, how a single biconvex lens can be used Ans:

A single biconvex lens as a magnifying glass: (2 Times) When the object is placed within the focal length of the lens then an erect, virtual and magnified image is formed.

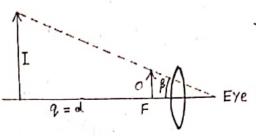
How Convex Lens act as magnifying glass? 7.

A convex lens of shorter focal length can be used as a magnifier when the object Ans: is placed very close to it i.e. when it lies between the lens and its focus. The image then formed is virtual, erect and magnified.

Define near point and resolving power. 8.

The minimum distance from the eye at which an object appears to be distinct is Ans: called near point. Its numerical value is 25 cm. The resolving power of an instrument is its ability to reveal the minor details of

an


Focal length of convex lens is 5 cm, calculate its magnification. 9.

As we know that $M = 1 + \frac{d}{f} = 1 + \frac{25 \text{ cm}}{5 \text{ cm}} = 1 + 5 = 6$

Where d is least distance of distinct vision.

Describe with diagram, how a convex lens 10. can be used as magnifying glass?

The object is placed inside the focal point Ans: of the lens. The magnified and virtual image is formed at least distance of distinct vision as shown in figure.

Define Resolving Power. Give its expression.

11. Resolving power is the ability of the instrument to reveal the minor details of an Ans: object under examination. Mathematically,

$$R \propto \frac{1}{\alpha_{\min}}$$

Where $lpha_{\min}$ the minimum angle is which two point sources subtends at the instrument.

For diffraction grating Resolving power R=Nm

Define resolving power and the magnification. 12.

The resolving power of an instrument is its ability to reveal the minor details of Ans: the object under examination.

The ratio of the size of the image to the size of the object is called magnification.

Topic II: Magnifying Power and Resolving Power of Optical Instruments:

Differentiate between angular magnification and resolving power of an instrument. What limits the magnification of an optical instrument? (6 times)

Angular magnification: The ratio of the angle subtended by the image as seen through the optical instrument to the angle subtended by the object at the unaided eye is called angular magnification i.e.

Resolving power is the ability of the instrument to reveal the minor details of an object under examination. It is measured in terms of minimum angle.

$$R = \frac{1}{\alpha_{min}}$$

The magnification of an optical instrument is limited due to defects in the lenses. Such as chromatic and spherical aberrations.

What is resolving power in optical instruments? Write formula for grating. 14.

Resolving power is the ability of the instrument to reveal the minor details of an Ans: object under examination.

And formula for grating is

$$R = \frac{\lambda}{\Delta \lambda}$$

Where $\Delta \lambda = \lambda_2 - \lambda_1$ and $\lambda \approx \lambda_1 \approx \lambda_2$

Find magnifying power of a convex lens of 25cm focal length act as a 15. magnifying glass.

 $magnifying\ power = M = ?$ Ans:

focal length =
$$f = 25 cm$$

 $M = 1 + \frac{d}{f}$
 $M = 1 + \frac{25 cm}{25 cm} = 1 + 1 = 2$

As

When object lie within the principle focus of convex lens what is the nature of 16. image and where it is formed?

When object lie within the principle focus of convex lens, then image will be virtual, erect and magnified and will be formed at least distance of distinct vision. Ans: Find the magnifying power of a convex lens of 10cm focal length.

17. $magnifying\ power = M = ?$ Ans:

As

focal length = f = 10 cm $M = 1 + \frac{d}{f}$ $M = 1 + \frac{10cm}{25cm}$ M = 1.4

18. What is difference between magnifying power and resolving power of optical instrument?

188

Ans: Magnifying power: The ratio of the angles subtended by the image as seen through the optical device to that subtended by the object at the unaided eye is called angular magnification or magnifying power of an optical instrument.

But the magnification alone is of no use unless we can see details of the object distinctly. Resolving power: The resolving power of an instrument is its ability to reveal the minor details of an object under examination. It is measured in terms of minimum angle.

19. What do you understand by Linear Magnification?

Ans: Linear magnification is the ratio of the size of the image to the size of object. Angular magnification is the ratio of the angle subtended by the image as seen through the optical device to that subtended by the object at the naked eye placed at least distance of distinct vision. 20.

What do you understand by linear magnification and angular magnification? Explain how a convex lens is used as magnifier? Ans:

Linear magnification is the ratio of the size of the image to the size of object. (4 Times) Angular magnification is the ratio of the angle subtended by the image as seen through the optical device to that subtended by the object at the naked eye

A convex lens of shorter focal length can be used as a magnifier when the object is placed very close to it i.e. when it lies between the lens and its focus. The image then formed is virtual, erect and magnified.

A magnifying glass gives a five time enlarged image at a distance of 25 cm from 21. the lens. What will be the focal length of the lens?

Ans:

d = 25 cmM = 5

Define critical angle and least distance of distinct vision. 22.

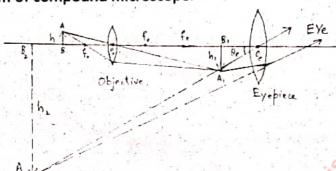
The angle of incidence in denser medium for which its corresponding angle of refraction is 90° is called critical angle. The minimum distance from the eye at which an object appears to be distinct is

called least distance of distinct vision. Its numerical value is 25 cm.

Topic III: Microscope:

In simple microscope the focal length of its lens is $\frac{1}{5}d$, where 'd' is least 23. distance of distinct vision. Find its magnifying power.

 $magnifying\ power = M = ?$ Ans:


As

 $focal length = f = \frac{1}{5}d$ M = 1 + 5M=6

189

- Why would it be advantageous to use blue light with a compound 24. (29 Times) microscope?
- The use of blue light in compound microscope is advantageous because of its Ans: short wavelength. It results in a decrease in diffraction and increase in resolution
- One can buy a cheap microscope for use by the children. The image seen in 25. such a microscope has coloured edges. Why is this so?
- It is due to the defects of lenses known as chromatic aberrations. This is because Ans: of the prism like formation of the lens which causes dispersion of white light.
- Draw ray diagram of compound microscope. 26.

Ans:

How can the resolving power of compound microscope be increased?

Ans: A wider objective and use of blue light of short wavelength produces less diffraction and allows more details to be seen. In this way resolving power can be increased.

Topic IV: Astronomical Telescope:

If the person was looking through a telescope at the full moon, how would the appearance of the moon be changed by covering half of the objective lens?

He will see the full moon still but the brightness will be reduced because less light is transmitting through the half covered lens.

A telescope is made an objective of focal length 20 cm and eye-piece of 5 cm, both convex lenses. Find the magnifying power of telescope. (2 Times) 29.

 $magnifying\ power = M = ?$ Ans:

focal length of objective = f_o = 20 cm focal length of eyepiece = f_e = 5 cm $M = \frac{f_o}{f_e} = \frac{20}{5} = 4$

As

What are the problems having a high magnifying power in astronomical 30. telescope?

High magnifying power in astronomical telescope was accompanied by more spherical and chromatic aberration, geometric distortion and false colors. Ans:

Differentiate between microscope and telescope. 31.

Microscope is a device which is used to see the magnified image of very small and near object. Whereas telescope is an optical instrument used for viewing distant objects.

What do you mean by "Normal adjustment" in an astronomical telescope? 32.

In normal adjustment, the image formed by the objective lies at the focus of Ans: both the objective and the eye-piece and the final Image appears to be formed at infinity. The distance between the objective and eye-piece of a telescope in normal adjustment is fo+fe which equals the length of the telescope.

33. An astronomical telescope of long focal length and large aperture is considered

to be a good telescope. Why?

Ans: Objective of long focal length and large aperture is used to collect a great amount of light from the astronomical objects.

Topic V: Spectrometer:

34. What is spectrometer? (4 Times). OR

What is the spectrometer? Write the names of its essential components. Ans:

Spectrometer is a device which is used to study the spectra from different light sources.

Its main parts are

Collimator Turntable iii. Telescope 35.

What is the function of collimator in a spectrometer? Ans:

Collimator is used to make the light rays parallel. It consists of a fixed metallic tube, a convex lens and an adjustable slit. 36.

Write any two uses of spectrometer. Ans:

(3 Times)

It is used to study spectra from different sources of light. It is used to determine the wavelength of light.

37. What are uses of spectrometer?

It is used to study spectra from different sources of light. Determine the Ans: wavelength of light by grating. Study the deviation of light by glass prism. Calculate refractive index of prism material.

Topic VII: Introduction to Fibre Optics: 38.

Define total internal reflection. For glass-air boundary, when a propagating wave strikes the boundary at an Ans: angle larger than critical angle with respect to the normal to the surface, all the light is reflected and none is refracted to the air. This phenomenon is called total

Why we use infrared light in a fiber optics communication system? 39. Ans:

Infrared light travels faster through optical fiber than visible light. So, it is

What are different types of optical fibre? 40.

There are three types of optical fibres. Ans: i.

Single mode step index fibre Multimode step index fibre ii.

Multimode graded index fibre iii. 41.

Define critical angle and total internal reflection. Ans:

Critical Angle: The angle of incidence in denser medium for which its corresponding angle of refraction is 90° is called critical angle. It is denoted by θ_c Total internal reflection: When a light ray traveling from a denser medium towards a rare medium, makes an angle of incidence greater than critical angle of the medium, then the ray is totally reflected back into the same denser medium. This phenomenon is called total internal reflection.

Define total internal reflection and continuous refraction. 42.

Total internal reflection: When a light ray traveling from a denser medium Ans: towards a rare medium, makes an angle of incidence greater than critical angle of the medium, then the ray is totally reflected back into the same denser medium. This phenomenon is called total internal reflection. Continuous refraction: It is the mode of propagation of light in which light is

46.

continuously refracted inside the different graded index fibers which are used in

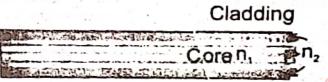
Define Snell's law and write its mathematical form.

Snell's Law states that the ratio of the sines of the angles of incidence and Ans: refraction of a wave are constant when it passes between two given media. OR Snell's Law is a formula used to describe the relationship between the angles of incidence and refraction, when referring to light or other waves passing through a boundary between two different isotropic media such as water, glass, or air. Mathematically, $n_1 \sin \theta_1 = n_2 \sin \theta_2$

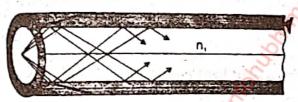
What is the condition for total internal reflection? 44. Ans:

(4 Times)

For glass-air boundary, when a propagating wave strikes the boundary at an angle larger than critical angle with respect to the normal to the surface, all the light is reflected and none is refracted to the air. This phenomenon is called total internal reflection. When a light ray traveling from a denser medium towards a rare medium, makes an angle of incidence greater than critical angle of the medium, then the ray is totally reflected back into the same denser medium.


Write down the three major components on which a fibre communication 45. system consists. (6 Times)

A fibre communication system consists of Ans:


Transmitter. ii. Optical fibre

Draw sketches showing the different light paths through a single-mode and a multi-mode fiber.

Single mode step index fibre Ans:

Multimode step index fibre

Multimode graded index fibre

Calculate the critical angle for glass - air boundary, if refractive index of glass is 47. 1.5 and the ray of light is passing from glass to air.

When a ray of light is passing through glass to air, the angle of incidence for which angle of refraction is equal to 90° is called critical angle

From Snell's Law

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

$$n_1 \sin \theta_c = n_2 \sin 90^\circ$$

$$n_1 \sin \theta_c = n_2$$

$$\sin \theta_c = n_2 / n_1$$

$$\sin \theta_c = 1.0 / 1.5$$
(for air $n_2 = 1.0$)
$$\theta_c = 41^\circ$$

Write the advantages of using light as transmission carrier wave over radio 48. wave carriers.

The use of light as transmission carrier wave in fibre optics has several advantages over radio wave carriers such as a much wider bandwidth capability and immunity from electromagnetic interference.

Define refractive index of a medium. Write its two mathematical forms. 49.

Refractive index is the ratio of speed of light in vacuum to the speed of light in Ans: the material.

Two mathematical forms are:

 $n=\frac{c}{}$

Where θ_c is critical angle.

Differentiate between multimode step index and multimode graded index fibre Ans:

Multimode graded index fibre.
It has a core of diameter from 50 µm to 1000 µm.
It is useful for long distance applications in which white light is used.
It has a core of relatively high refractive index and the refractive index decreases gradually from middle to the outer surface of fibre.

What is Repeater? Why it is necessary in the optical communication system? 51.

The repeater regenerates the light signals in the optical fibre communication system. Despite the ultra-purity (99.99% glass) of the optical fibre, the light signals eventually become dim and must be regenerated. 52.

Describe two causes of power losses in optical fibre during transmission of light

Ans: i. some light is absorbed due to impurities in the glass.

Some light is scattered by groups of atoms which are formed at places such as joints of fibres.

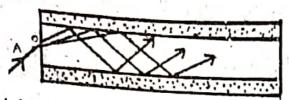
The information can be inaccurate due to dispersion or spreading of the light signals. iv. 53.

What is the use of light emitting diode and microphone in signal transmission

Light emitting diode is used as light source. Such light travel much faster through Ans: optical fibres. Electrical signals are converted into light signals by digital modulation. Microphone converts sound signal into electrical signal.

Topic VIII: Signal Transmission and Conversion to sound:

How light signal is transmitted through optical fibre? The light signals are transmitted through the optical fibre on the principle of Ans: (14 Times)


i.

Continuous refraction

In multimode step index fiber, the signal is transmitted by mean of total internal reflection while in case of multimode graded index fiber, the signal is transmitted by total internal reflection and continuous refraction.

Topic IX: Cosses of Power:

How the power is lost in optical fibre through dispersion? Explain. 55. If the source of light signal is not monochromatic, then the light will disperse Ans: while propagating through the core of the optical fibre into different wavelengths λ_1 , λ_2 and λ_3 etc as shown in fig. λ_1 meets the core and cladding at the critical angle and λ_2 and λ_3 at slightly greater angles. The light paths of different wavelengths have thus different lengths. So they reach the other end at different times and the signal received is distorted or faulty.

How the power is lost in Optical fibre? 56. Ans:

If light is not perfectly monochromatic, power is lost due to dispersion (or spreading of the light signal). Some light is absorbed due to impurities in the glass. Some light is scattered by groups of atoms which are formed at places such as joints when fibres are joined together.

How convex lens is used as a magnifier? What limits the magnification of an optical instrument?

Convex lens is called simple microscope as it is often used as a magnifier when Ans: an object is brought within the focal length of convex lens. The magnified and virtual image is formed at least distance of distinct vision d. The magnification of an optical instrument is limited due to defects in lenses such as chromatic and spherical aberrations.

If the magnifying glass has magnifying power 6 then find the focal length of 58.

Ans:

57.

magnifying power = M = 6

$$focal\ length = f = ?$$

 $M = 1 + \frac{d}{f}$
 $6 = 1 + \frac{25\ cm}{f}$
 $6 - 1 = \frac{25\ cm}{f}$
 $5 = \frac{25}{f}$
 $f = \frac{25}{f} = 5\ cm$

59. What is optical fibre? Write down two uses of fibre optics.

A thin flexible fibre with a glass core through which light signals can be sent with very little loss of strength.

i) It is used for to transmit light around corners and into inaccessible places so that the formerly unobservable could be viewed.

ii)The use of fibre optic tools in industry is now very common, and their importance as diagnostic tools in medicine.

What is meant by least distance of distinct vision? 60.

The minimum distance from the eye at which an object appears to be distinct is called least distance of distinct vision OR near point. The distance is about 25 cm from the eye. It is denoted by diff the object is held closer to the eye than this distance the image formed will be blurred and fuzzy. The location of the near point however changes with age.

What is the length of the telescope in state of normal adjustment? 61. In normal adjustment, the image formed by the objective lies at the focus of both the objective and the eye-piece and the final image appears to be formed at infinity. The distance between the objective and eye-piece of a telescope in normal adjustment is f_0+f_e which equals the length of the telescope.

LONG QUESTIONS OF CHAPTER-10 IN ALL PUNJAB BOARDS 2011-2021

I opic III. Microscope:

What is compound microscope? Draw rays diagram and derive expression for the (7 Times) magnification of compound microscope.

What is simple microscope? Draw rays diagram and find the magnifying power of (5 Times) simple microscope.

3. What is compound microscope? Explain its working and drive formula for its magnifying (5 Times) power.

Topic IV: Astronomical Telescope:

What is Astronomical Telescope? Describe its construction and working. Derive a formula to calculate its magnifying power.

What is a telescope? Draw its ray - diagram and derive a relation for its magnificiation

Topic V: Spectrometer

What is spectrometer? Describe its construction and working. Also write down its two uses, (2 Times)

What is spectrometer? Describe its construction, working and uses.

Topic VII: Introduction to Fibre Optics:

What is optical fibre? Write its principle and how light is propagated through optical (3 Times)

NUMERICAL PROBLEMS OF CHAPTER-10 IN ALL PUNJAB BOARDS 2011-2018

Topic II: Magnifying Power and Resolving Power of Optical Instruments

1. An astronomical telescope having magnifying power 5 consists of two thin lenses $25\ cm$ apart. Find the focal length of lenses. (4 Times)

magnification of telescope = M = 5distance between lenses = L = 25 cm focal length of objective = $f_0 = ?$ focal length of eyepiece = $f_e = ?$

 $f_o = M f_e$ $f_o = 5f_o$ $L = 5f_e + f_e$

We know that

 $25 = 6f_e$ = 4.17 cm

 $f_0 = 5(4.17) = 20.83 cm$ 2. A simple astronomical telescope is normal adjustment has an objective of focal length 100 cm and eye piece of focal length 5 cm. Find the position of the final image and its angular magnification.

focal length of objective = $f_0 = 100 cm$ focal length of eyepiece = $f_e = 5 \text{ cm}$ distance of the image = $q_e = ?$

angular magnification = M = ?

Position of the Final Image

$$\frac{1}{f_c} = \frac{1}{\frac{1}{p_e}} - \frac{1}{\frac{1}{q_e}}$$

$$\frac{1}{q_e} = \frac{1}{\frac{1}{p_e}} - \frac{1}{\frac{1}{f_e}}$$

$$\frac{1}{q_e} = \frac{1}{5} - \frac{1}{5}$$

$$\frac{1}{q_e} = 0$$

$$q_e = \frac{1}{0} = \infty$$

In an astronomical telescope, final image is always formed at infinity.

Angular Magnification

We know that

$$M = \frac{f_o}{f_c} = \frac{100cm}{5cm} = 20$$

know that $M=\frac{f_o}{f_c}=\frac{100cm}{5cm}$ = 20 A telescope is made of an objective of focal length 20 cm and an eyepiece of 5.0 cm, both convex lenses. Find the angular magnification.

Sol:

$$f_0 = 20 cm$$
$$f_e = 5.0 cm$$
$$M=?$$

For a telescope

$$M = \frac{f_0}{f_e}$$

Putting values,

$$M = \frac{20 \, cm}{5.0 \, cm} = 4$$

A microscope has an objective lens of 10mm focal length, and an eye piece of 25mm focal length. What is the distance between the lenses and its magnification, if the object is in sharp focus when it is 10.5mm from the objective?

Sol:

$$f_{o} = 10 \text{ mm} \qquad , \qquad f_{e} = 25 \text{ mm}$$
 Distance between the lenses = $q_{1} + p_{2} = ?$, $M = ?$ For objective alone
$$\frac{1}{p_{1}} + \frac{1}{q_{1}} = \frac{1}{f_{o}}$$

$$\frac{1}{q_{1}} = \frac{1}{f_{o}} - \frac{1}{p_{1}}$$

$$\frac{1}{q_{1}} = \frac{1}{10.5} = \frac{10.5 - 10}{10 \times 10.5} = \frac{10.5 - 10}{10$$

q1 = For eye piece alone virtual image is formed at least distance of distinct vision.

So;

and
$$\frac{\frac{1}{p_2} + \frac{1}{q_2} = \frac{1}{f_e}}{\frac{1}{p_2} = \frac{1}{f_e} - \frac{1}{q_2}} = \frac{1}{1}$$

$$\frac{p_2}{\frac{1}{p_2}} = \frac{f}{\frac{1}{25}} = \frac{q_2}{\frac{1}{(-250)}} = \frac{1}{25} + \frac{1}{250} = \frac{250 + 25}{25 \times 250}$$

$$\frac{1}{1} = \frac{275}{25} = \frac{6250}{15} = 22,72 \text{ mm}$$

 $\frac{275}{6250} = \frac{6250}{275}$ Distance between the lenses = $q_1 + p_2 = 210 + 22.72 = 232.7$ mm

 $q_1 + p_2 = 233 \text{ mm}$

Magnification by objective

$$M_1 = \frac{q_1}{p_1} = \frac{210}{10.5} = 20.0$$

Magnification by eye piece

$$M_2 = \frac{q_2}{n_2} = \frac{-250}{22.7} = -11.0$$

 $M = M_1M_2 = 20.0 \times (-11.0) = -220$ Total magnification

Negative sign shows that the image is virtual. A compound microscope has lenses of focal length 1.0 cm and 3.0 cm an object is 5. placed 1.2cm from the object lens. If a virtual image is formed 25 cm from the (4 times) eyes, calculate the separation of the lenses.

Sol:

 $f_0 = 1.0 \text{ cm}$ $F_e = 3.0 \text{ cm}$ p = 1.2 cmq = -25 cm (virtual image) L=? M = ?

 $\frac{1}{f_0} = \frac{1}{p} + \frac{1}{q}$ $OR \quad \frac{1}{q} = \frac{1}{f_0} - \frac{1}{p}$ $OR = \frac{1}{q} = \frac{1}{1} - \frac{1}{1.2}$

Again $\frac{1}{f} = \frac{1}{p'} + \frac{1}{a'}$ $\frac{1}{p'} = \frac{1}{f_a} + \frac{1}{a'}$ $\frac{1}{p'} = \frac{1}{3} - \left(-\frac{1}{25}\right)$ $\frac{1}{p'} = \frac{1}{3} + \frac{1}{25}$ $p' = 2.7 \, cm$

Seperation between lens L = q + p' = 6 + 2.7 = 8.7 cm

Topic IV: Astronomical Telescope:

An astronomical telescope having magnifying power 5 consists of two thin 6. lenses 24 cm apart. Find the focal length of lenses.

Sol:

(9 Times) magnification of telescope = M = 5distance between lenses = L = 24 cmfocal length of objective = $f_0 = ?$ focal length of eyepiece = $f_e = ?$

Since

 $M = \frac{f_o}{f_e}$ $f_o = M f_e$ $f_o = 5 f_e$ $L = f_o + f_e$ $L = 5 f_e + f_e$ $24 = 6 f_e$ $f_e = \frac{24}{6} = 4 cm$

We know that

And

 $f_0 = 5f_e = 5(4) = 20 cm$

 A telescope is made of an objective of focal length 20 cm and an eye piece of focal length 5 cm, both convex lenses. Find the angular magnification. (5 Times)

Sol:

focal length of objective = $f_o = 20 \text{ cm}$ focal length of eyepiece = $f_e = 5 \text{ cm}$ angular magnification = M = ?

We know that

$$M = \frac{f_o}{f_e} = \frac{20}{5} \boxed{= 4}$$

Topic VII: Introduction to Fibre Optics:

8. A glass light pipe in air will totally internally reflect a light ray if its angle of incidence is at least 39°. What is the minimum angle for total internal reflection if pipe is in water? (7 Times)

Sol:

angle of incidence for glass = $\theta_c = 39^\circ$ angle of incidence for water = $\theta_c = ?$

The refractive index of glass light pipe is

 $n = \frac{1}{\sin \theta_c} = \frac{1}{\sin 39^\circ} = \frac{1}{0.629} = 1.59$

Snell's law is

 $n_1\sin\theta_1=n_2\sin\theta_2$

Where

refractive index for glass = $n_1 = 1.59$

refractive index for water = $n_2 = 1.33$

total internal reflection = $\theta_2 = 90^\circ$

minimum angle for total internal reflection = $\theta_1 = \theta_c = ?$

So

$$n_1 \sin \theta_c = n_2 \sin \theta_2$$

$$\sin \theta_c = \frac{n_2 \sin \theta_2}{n_1}$$

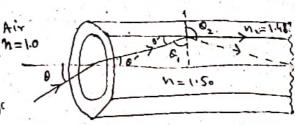
$$\sin \theta_c = \frac{(1.33) \sin 90^\circ}{1.59}$$

$$\sin \theta_c = 0.84$$

$$\theta_c = \sin^{-1}(0.84) = 57^\circ$$

9. Calculate the critical angle and angle of entry for an optical fibre having core of refractive index 1.50 and cladding of refractive index 1.48. (2 Times)

Sol: We have n₁ = 1.50


 $n_2 = 1.48$

(i) From snell's law

 $n_1 \sin \theta_1 = n_2 \sin \theta_2$

When

 $\theta_1 = \theta_c$, $\theta_2 = 90^{\circ}$ So, 1.50 $\sin \theta_c = 1.48 \sin 90^{\circ}$

$$\sin \theta_c = \frac{1.48(1)}{1.50} = 0.987$$

$$\theta_c = \sin^{-1}(0.987)$$

$$\theta_c = 80.6^{\circ}$$

From

fig.,
$$\theta' = 90^{\circ} - \theta_c = 90^{\circ} - 80.6^{\circ} = 9.4^{\circ}$$

(ii) Again, using Snell's law, we get

$$n\sin\theta = 1.5\sin\theta'$$

$$= 1.5\sin 9.4^{\circ}$$

$$\sin\theta = 0.245$$

$$\theta = \sin^{-1}(0.245)$$

$=\sin^{-1}(0.245)=14.2^{\circ}$

OBJECTIVES (MCQ'S) OF CHAPTER-11 **IN ALL PUNJAB BOARD 2011-2021**

Topic I: Kinetic Theory of Gases:

1. Boltzman constant 'k' is equal to:

2. An ideal gas is one whose molecules have:

(A) Kinetic energy only

(B) Potential energy only

(C) Rotational kinetic energy only

(D) Vibrational kinetic energy only

3. Boyle's law is applicable to:

(A) Isobaric process (B) Isochoric process (C) Isothermal process (D) Adiabatic process

4. A graph between V and T of a gas at constant pressure is:

(A) Hyperbola

(B) Parabola

(C) Straight line

5. Average translational K.E of molecules for an ideal gas given by relation: (4 Times) (D) Exponential curve

(D) $\frac{3}{2k}T$

6. Pressure of a gas is given by the relation: (A) $\frac{2}{3} \rho < v^2 >$

(2 Times) (B) $\frac{1}{3} \rho < v^2 >$ (C) $\frac{3}{2} \rho < v^2 >$

7. According to Charles law:

(A) $V \propto T$

(B) $V \propto n$

(C) $P \propto \frac{1}{T}$

(D) $P \propto \frac{1}{V}$

8. The ideal gas law is:

(A) PV = NVK

(B) P = NKT

(C) PV = nRT

9. The Boltzman constant 'k' in terms of universal gas constant 'R' and Avogadro

(A) $k = N_A R$

(B) $K = \frac{\kappa}{-\kappa}$

(C) $k = \frac{N_A}{N_A}$

(2 Times) (D) k = nRN

10. The value of Boltzman constant K is:

(A) 1.38 x 10²³ JK⁻¹

(B) 1.38 x 10⁻²³ JK⁻¹

(C) 1.38 x 10²⁶ JK⁻¹

11. S.I unit pressure of gas is:

(A) Nm⁻²

(B) N.m

(C) N2/m

12. Temperature of a gas is increased from 27° C to 127° C. The ratio of its mean K.E will be

(D) 10/9

		A	Plus Physics Solved Paper
3, A Diatomic gas mo	olecules has:		and the second
~ 613110111 61161 6 7	7 01110	(D) Detection of	anu anlu
Vibrational energy	only	(B) Rotational ene	rgy only
At constant temp	erature, if prossure	(D) All	
volume becon	ne:	of a given mass of a	gas is halved then its
			(2 Times)
NI Mari	(B) Doubled	(C) Four Times	(D) Constant
5. Average translati	ondi K.E. of molecule	es for an ideal gas is	given as.
A) $\frac{2}{3}KT$	(B) $\frac{3}{2}KT$	(C) $\frac{2}{3K}T$	(D) $\frac{3}{2K}T$;
6. At constant temp then density of t	perature and pressur he gas becomes:	e, if volume of given	mass of a gas is doubled,
A) Dobule	(B) $\frac{1}{4}$ of original	(C) $\frac{1}{2}$ of original	(D) Unchanged
opic II: Internal			
7.The internal ener	rgy of a piece of lead	When beaten by har	mmor will:
A) Increase		(B) Decrease	dial's
C) Remains constan	ı t		and then decrease
18.The latent heat of	of fusion of ice is:		(2 Times)
(A) $3.36 \times 10^5 Jkg^{-1}$	(B) $3.36 \times 10^6 J kg^{-1}$	(c) $3.36 \times 10^7 \text{ Jkg}^{-1}$	(D) $3.36 \times 10 J kg^{-1}$
19.For an ideal gas	system, the internal	energy is directly pro	portional to:
(A) Pressure	(B) Volume	(C) Mass	(D) Temperature
20.At which of the	following temperatu	re a body has maxim	um internal energy:
(A) -273 °C	(B) 0 K	(C) 273 K	(D) -273 K
21.In thermodynar			100 J and 100 J of work is
		circiby accidates by	700 1 410 700 101 MOLK 12
	stem then heat lost w		2003 and 2003 to Work IS
done on the sy: (A) Zero	stem then heat lost w (B) 100 J	vill be: (C) 200 J	(D) -200 J
done on the sy: (A) Zero	stem then heat lost w	vill be: (C) 200 J	(D) -200 J
done on the sy: (A) Zero	stem then heat lost w (B) 100 J s, the potential energ	vill be: (C) 200 J	(D) -200 J
done on the sys (A) Zero 22. For an ideal gas (A) Maximum	stem then heat lost w (B) 100 J s, the potential energ (B) Zero	vill be: (C) 200 J sy associated with its (C) $\frac{1}{2}kx_0^2$	(D) -200 J molecules is:
done on the sy (A) Zero 22. For an ideal ga (A) Maximum 23. The change in	stem then heat lost w (B) 100 J s, the potential energ (B) Zero internal energy is def	vill be: (C) 200 J sy associated with its (C) $\frac{1}{2}kx_0^2$ ined as:	(D) -200 J molecules is: (D) $\frac{1}{2}kx_0$
done on the system (A) Zero 22. For an ideal gas (A) Maximum 23. The change in (A) Q – W	stem then heat lost w (B) 100 J s, the potential energ (B) Zero internal energy is def (B) Q – T	vill be: (C) 200 J sy associated with its (C) $\frac{1}{2}kx_0^2$	(D) -200 J molecules is:
done on the system (A) Zero 22. For an ideal gas (A) Maximum 23. The change in (A) Q – W Topic III: Work	stem then heat lost w (B) 100 J s, the potential energ (B) Zero internal energy is def (B) Q – T and Heat:	vill be: (C) 200 J sy associated with its (C) $\frac{1}{2}kx_0^2$ ined as:	(D) -200 J molecules is: (D) $\frac{1}{2}kx_0$ (D) Q – P
done on the system (A) Zero 22. For an ideal gas (A) Maximum 23. The change in (A) Q – W Topic III: Work 24. Heat is a form	stem then heat lost w (B) 100 J s, the potential energ (B) Zero internal energy is def (B) Q - T and Heats of:	vill be: (C) 200 J Ey associated with its (C) $\frac{1}{2}kx_0^2$ Fined as: (C) Q + P	(D) -200 J molecules is: (D) $\frac{1}{2}kx_0$ (D) Q - P
done on the system (A) Zero 22. For an ideal gast (A) Maximum 23. The change in (A) Q – W Topic III: Work 24. Heat is a form (A) Power	stem then heat lost w (B) 100 J s, the potential energ (B) Zero internal energy is def (B) Q - T and Heat: of: (B) Work	vill be: (C) 200 J sy associated with its (C) $\frac{1}{2}kx_0^2$ ined as: (C) Q + P	(D) -200 J molecules is: (D) $\frac{1}{2}kx_0$ (D) Q - P
done on the system (A) Zero 22. For an ideal gast (A) Maximum 23. The change in (A) Q – W Topic III: Work 24. Heat is a form (A) Power 25. The measure of	stem then heat lost w (B) 100 J s, the potential energ (B) Zero internal energy is def (B) Q - T and Heat: of: (B) Work of hotness or coldness	vill be: (C) 200 J Ey associated with its (C) $\frac{1}{2}kx_0^2$ Fined as: (C) Q + P (C) Energy For a substance is:	(D) -200 J molecules is: (D) $\frac{1}{2}kx_0$ (D) Q - P (3 Times) (D) Motion
done on the system (A) Zero 22. For an ideal gas (A) Maximum 23. The change in (A) Q – W Topic III: Work 24. Heat is a form (A) Power 25. The measure of	(B) 100 J s, the potential energy (B) Zero internal energy is def (B) Q - T and Heat: of: (B) Work of hotness or coldness	vill be: (C) 200 J Ey associated with its (C) $\frac{1}{2}kx_0^2$ ined as: (C) Q + P (C) Energ of a substance is: (C) Intern	(D) -200 J molecules is: (D) $\frac{1}{2}kx_0$ (D) Q - P (3 Times) (D) Motion
done on the system (A) Zero 22. For an ideal gast (A) Maximum 23. The change in (A) Q – W Lopic III: Work 24. Heat is a form (A) Power 25. The measure of (A) Temperature 26. If the tempera	stem then heat lost w (B) 100 J s, the potential energy (B) Zero internal energy is def (B) Q - T and Heat: of: (B) Work of hotness or coldness (B) Heat ture of a system is ke	vill be: (C) 200 J (y associated with its (C) $\frac{1}{2}kx_0^2$ ined as: (C) Q + P (C) Energ (C) Interrept constant, the process	(D) -200 J molecules is: (D) $\frac{1}{2}kx_0$ (D) Q – P (3 Times) (D) Motion hal energy (D) Energy tess is called:
done on the system (A) Zero 22. For an ideal gast (A) Maximum 23. The change in (A) Q – W Lopic III: Work 24. Heat is a form (A) Power 25. The measure of (A) Temperature 26. If the temperature	(B) 100 J s, the potential energy (B) Zero internal energy is def (B) Q - T and Heat: of: (B) Work of hotness or coldness (B) Heat iture of a system is ke	yill be: (C) 200 J (y associated with its (C) $\frac{1}{2}kx_0^2$ ined as: (C) Q + P (C) Energy (C) Interrest constant, the processing (C) Isothermark	(D) -200 J molecules is: (D) $\frac{1}{2}kx_0$ (D) Q - P (3 Times) (D) Motion hal energy (D) Energy tess is called: ermal (D) Adiabatic
done on the system (A) Zero 22. For an ideal gast (A) Maximum 23. The change in (A) Q – W Lopic III: Work 24. Heat is a form (A) Power 25. The measure of (A) Temperature 26. If the temperature	(B) 100 J s, the potential energy (B) Zero internal energy is def (B) Q - T and Heat: of: (B) Work of hotness or coldness (B) Heat iture of a system is ke	yill be: (C) 200 J (y associated with its (C) $\frac{1}{2}kx_0^2$ ined as: (C) Q + P (C) Energy (C) Interrest constant, the processing (C) Isothermark	(D) -200 J molecules is: (D) $\frac{1}{2}kx_0$ (D) Q - P (3 Times) (D) Motion hal energy (D) Energy tess is called: ermal (D) Adiabatic
done on the system (A) Zero 22. For an ideal gas (A) Maximum 23. The change in (A) Q – W Topic III: Work 24. Heat is a form (A) Power 25. The measure of (A) Temperature 26. If the temperature (A) Isobaric Topic IV: First I 27. First law of The	(B) 100 J s, the potential energy (B) Zero internal energy is def (B) Q - T and Heat: of: (B) Work of hotness or coldness (B) Heat sture of a system is ke (B) Isocho	(C) 200 J (y associated with its (C) $\frac{1}{2}kx_0^2$ ined as: (C) Q + P (C) Energy (C) Interrept constant, the process of a Adiabatic Process with the pr	(D) -200 J molecules is: (D) $\frac{1}{2}kx_0$ (D) Q - P (3 Times) (D) Motion (al energy (D) Energy (d) ess is called: (ermal (D) Adiabatic (ill be written as: (3 Times)
done on the system (A) Zero 22. For an ideal gast (A) Maximum 23. The change in (A) Q – W Lopic III: Work 24. Heat is a form (A) Power 25. The measure of (A) Temperature 26. If the temperature (A) Isobaric Lopic IV: First I 27. First law of The (a) Q=W	(B) 100 J s, the potential energy (B) Zero internal energy is def (B) Q - T and Heat: of: (B) Work of hotness or coldness (B) Heat ature of a system is ke (B) Isocho aw of thermodynamics for an (b) Q=-W	vill be: (C) 200 J Ey associated with its (C) $\frac{1}{2}kx_0^2$ ined as: (C) Q + P (C) Energy (C) Interrest constant, the process of a substance is: (C) Interrest constant, the process of a substance is: (C) Interrest constant, the process of a substance is: (C) Interrest constant, the process of a substance is: (C) Interrest constant, the process of a substance is: (C) Interrest constant, the process of a substance is: (C) Interrest constant, the process of a substance is: (C) Interrest constant, the process of a substance is: (C) Interrest constant, the process of a substance is: (C) Interrest constant, the process of a substance is: (C) Interrest constant, the process of a substance is:	(D) -200 J molecules is: (D) $\frac{1}{2}kx_0$ (D) Q - P (3 Times) (D) Motion (al energy (D) Energy (ess is called: ermal (D) Adiabatic (III be written as: (3 Times) (J) (d) W= ΔU
done on the system (A) Zero 22. For an ideal gas (A) Maximum 23. The change in (A) Q - W Topic III: Work 24. Heat is a form (A) Power 25. The measure of (A) Temperature 26. If the tempera (A) Isobaric Topic IV: First I 27. First law of Th (a) Q=W	(B) 100 J s, the potential energy (B) Zero internal energy is def (B) Q - T and Heat: of: (B) Work of hotness or coldness (B) Heat ature of a system is ke (B) Isocho aw of thermodynamics for an (b) Q=-W	vill be: (C) 200 J Ey associated with its (C) $\frac{1}{2}kx_0^2$ ined as: (C) Q + P (C) Energy (C) Interrest constant, the process of a substance is: (C) Interrest constant, the process of a substance is: (C) Interrest constant, the process of a substance is: (C) Interrest constant, the process of a substance is: (C) Interrest constant, the process of a substance is: (C) Interrest constant, the process of a substance is: (C) Interrest constant, the process of a substance is: (C) Interrest constant, the process of a substance is: (C) Interrest constant, the process of a substance is: (C) Interrest constant, the process of a substance is: (C) Interrest constant, the process of a substance is:	(D) -200 J molecules is: (D) $\frac{1}{2}kx_0$ (D) Q - P (3 Times) (D) Motion (al energy (D) Energy (ess is called: ermal (D) Adiabatic (III be written as: (3 Times) (J) (d) W= ΔU
done on the system (A) Zero 22. For an ideal gas (A) Maximum 23. The change in (A) Q – W Topic III: Work 24. Heat is a form (A) Power 25. The measure of (A) Temperature 26. If the temperature 26. If the temperature 27. First law of The (a) Q=W Topic V: Molar 28. The pressure	(B) 100 J s, the potential energy (B) Zero internal energy is def (B) Q - T and Heat: of: (B) Work of hotness or coldness (B) Heat sture of a system is ke (B) Isocho aw of thermodynamics for an (b) Q=-W Specific Heat of G	yill be: (C) 200 J y associated with its (C) $\frac{1}{2}kx_0^2$ ined as: (C) Q + P (C) Energ (C) Interrept constant, the process of a substance is: (C) Isotherm (C) Isotherm (C) Isotherm (C) Isotherm (C) W=-\Delta (C) W=-	(D) -200 J molecules is: (D) $\frac{1}{2}kx_0$ (D) Q - P (3 Times) (D) Motion (al energy (D) Energy (ess is called: (D) Adiabatic (III be written as: (3 Times) (J) (J) W= ΔU (h and at $0^{\circ}C$ is called:
done on the system (A) Zero 22. For an ideal gas (A) Maximum 23. The change in (A) Q – W Lopic III: Work 24. Heat is a form (A) Power 25. The measure of (A) Temperature 26. If the tempera (A) Isobaric Lopic IV: First I 27. First law of The (a) Q=W Lopic V: Molar 28. The pressure	(B) 100 J s, the potential energy (B) Zero internal energy is def (B) Q - T and Heate of: (B) Work of hotness or coldness (B) Heat sture of a system is ke (B) Isocho aw of thermodynamics for ar (b) Q=-W Specific Heat of G exerted by a column (B) 1 Nm	(C) 200 J (y associated with its (C) $\frac{1}{2}kx_0^2$ ined as: (C) Q + P (C) Energy (C) Interrept constant, the process we constant, the process we constant with the process we can be also with the process with the process with the process with the process we can be also with the process with t	(D) -200 J molecules is: (D) $\frac{1}{2}kx_0$ (D) Q - P (3 Times) (D) Motion (al energy (D) Energy (ess is called: (D) Adiabatic (III be written as: (3 Times) (IV) (D) W= ΔU (IV) H and at $0^{\circ}C$ is called:
done on the system (A) Zero 22. For an ideal gas (A) Maximum 23. The change in (A) Q – W Lopic III: Work 24. Heat is a form (A) Power 25. The measure of (A) Temperature 26. If the temperature 26. If the temperature 27. First law of The (a) Q=W Lopic V: Molar 28. The pressure	(B) 100 J s, the potential energy (B) Zero internal energy is def (B) Q - T and Heate of: (B) Work of hotness or coldness (B) Heat sture of a system is ke (B) Isocho aw of thermodynamics for ar (b) Q=-W Specific Heat of G exerted by a column (B) 1 Nm	(C) 200 J (y associated with its (C) $\frac{1}{2}kx_0^2$ ined as: (C) Q + P (C) Energy (C) Interrept constant, the process we constant, the process we constant with the process we can be also with the process with the process with the process with the process we can be also with the process with t	(D) -200 J molecules is: (D) $\frac{1}{2}kx_0$ (D) Q - P (3 Times) (D) Motion (D) Motion (D) Energy (Ess is called: (Ermal (D) Adiabatic (III be written as: (3 Times) (I) (III be Web (III) (III) (III)
done on the system (A) Zero 22. For an ideal gas (A) Maximum 23. The change in (A) Q – W Lopic III: Work 24.Heat is a form (A) Power 25.The measure of (A) Temperature 26.If the temperature 26.If the temperature 27. First law of The (a) Q=W Lopic V: Molar 28. The pressure	(B) 100 J s, the potential energy (B) Zero internal energy is def (B) Q - T and Heat: of: (B) Work of hotness or coldness (B) Heat sture of a system is ke (B) Isocho aw of thermodynamics for ar (b) Q=-W Specific Heat of G exerted by a column (B) 1 Nm e between Cp and Cv i	(C) 200 J (y associated with its (C) $\frac{1}{2}kx_0^2$ ined as: (C) Q + P (C) Energy (C) Interrest constant, the process we constant, the process we constant and constant are constant as: (C) W=-\Delta constant as: (C) Interrest constant and constant are constant are constant as: (C) Interrest constant are constant as: (C) Interrest constant are constant.	(D) -200 J molecules is: (D) $\frac{1}{2}kx_0$ (D) Q - P (3 Times) (D) Motion (D) Motion (D) Energy (Ess is called: (Ermal (D) Adiabatic (III be written as: (3 Times)

199

A Plus Physics Solved Paper

6 Isothermal process is carried out at cons	tant	
(B) Pressure (A) volume (B) Pressure	(C) Engray (f) Tamparatura
(A) Volume (A) The most important factor regarding the	continues of the C	or remperature
in the most will be a selected and the	significance of the C	arnot engine is.
(A) It is practically possible on the officiency	(B) Its efficiency is 10	0%
	(D) it sets a lower lim	it on the efficiency
" Which is not the example of adiabatic h	rocace.	
nanid escape of all from purst tyre	(B) Rapid ovpar	ision of air
in Conversion of Water into ice in a refriger	ator (D) Cloud format	ion in the atmosphere
in An adiabatic process is that which has c	onstant:	
(B) Volume	(C) Pressure (f) Temperature
co. The efficiency of carnot engine depends	on:	
(A) Nature of working substance	(B) Size of engine	S. S
(C) Construction of the engine	(D) Temperature of h	ot and cold reservoir
51. Cloud formation in the atmosphere is a	in example of:	(3 Times)
(A) Isothermal process	(B) Adiabatic process	
(C) Isobaric process	(D) Isochoric process	
52. For an Adiabatic process, first law of th	ermodynamics becom	es: (3 Times)
(A) $Q = \Delta U + W$ (B) $Q = \Delta U$	(C) $O = W$	(D) $\Delta U = -W$
53. The number of steps in Carnot engine		(3 Times)
		(D) 5
54. Which one is true for isothermal proce		(2 Times)
(A) $Q = W$ (B) $Q = 0$	(C) W = 0	(D) $W = \Delta U$
55.In an adiabatic process:		
(A) $Q = \Delta U + W$ (B) $Q = \Delta U$	(C) Q = W	(D) Q = 0
56.The curve representing an adiabatic pr		0
(A) Adiabat (B) Isotherm		(D) None
57.During adiabatic process which factor		a Los Company
(A) Entropy (B) Pressure		(D) Temperature
58. The Carnot cycle can be shown by which		8
(A) P – T graph (B) V – T graph		(D) PV -T graph
59.Isothermal process is carried out at co		
	(c) entropy	(d) temperature
60. For a diatomic gas $Cv = \frac{5R}{2}$ then Gamr		
	The second secon	
(a) $\frac{5}{7}$ (b) $\frac{4}{35}$	(c) 7	(d) $\frac{35}{4}$
		4
61. A Carnot engine has an efficiency of 5	0 %, when its sink tem	perature is at 27° C the
temperature of the source is:	100 8	(2 Times)
(A) 273° C (B) 300° C	(C) 327° C	(D) 373° C
Topic X: Thermodynamics Scale of	temperature:	27
62. The value of triple point of water is:		(7 Times)
(A) 373.16K (B) 273.16K	(C) 212K	(D) 100K
(A) 373.16K (B) 273.16K 63. Unit of thermodynamic scale of temp	erature is:	(2 Times)
(A) Kelvin (B) Centigrade	(C) Fahrenheit	(D) Celsius
(A) Kelvin (B) Centigrade		
64. Absolute zero temperature means:	(C) 0 K	(D) 273 K
35.A devise based upon the Thermodyna	amic property of matter	is called:
(a) Calorimeter (b) Heat engine	(c) Thermometer	(d) Voltmeter
(b) real of the control of the contr		

3. In thermodynamics process, the equation	on $W = -\Lambda H$ represe	nt:					
(A) Isothermal expansion	(B) Isothermal compre	ession					
, Adiabatic Chr	Adiabatic composite						
84. The potential energy to the molecules	of an ideal gas is consider	dered to be:					
(A) 100 J (B) 212 J	(C) 23 J	(D) Zero J					
85. Which one of the following processes i	t irroverable.	(D) Zeio J					
(A) slow compression of an elastic spring	s in eversible:						
(A) slow evaporation of a substance in an is	olotodiussat						
(C) slow compression of a gas	(D) a abasel of	The State of the State of					
86. When temperature of source and sink	of a boot anning templos	ion					
entropy change will be:	or a neat engine becom	nes equal then the					
(A) zero (B) minimum	(C) manimum	(2)					
87. The Mean Kinetic Energy of Gas is zero	(C) maximum	(D) negative					
(A) 0°C (B) -273 °C		(D) (CO (O)					
88. The Internal Energy of System does no	(C) 100 K	(D) 100 °C					
(A) Temperature (B) Pressure	(C) Dath						
(A) Temperature (B) Pressure	(C) Path (D) Initial and Final State					
89. If the temperature of sink is absolute should be:	zero then the efficienc						
(A) 100 % (B) 50 %	(0) 7	(2 Times)					
	COMPOSITION AND THE PROPERTY OF THE PROPERTY O	(D) Infinite					
	2019	and the state of the state of					
90. The approximate efficiency of dry cel		534					
(A) 70% (B) 80%	(C) 90%	(D) 93%					
91. For an ideal gas, the P.E. associated v	1	ual to:					
(A) $\frac{1}{2}$ KX (B) $\frac{1}{2}$ Kx $_0^2$	(C) 2 KX ₀	(D) Zero 🧬					
92. If internal energy decreases by 300 J and 1	20 J of work is done on the	system then heat will be:					
(A) 420 J (B) 320 J	(C) 400 J	(D) 300 J					
93. If TH = T1 = 327° and TL = T2 = 27 C°, the	en efficiency will be.	the state of					
(A) 50% (B) 52%	(C) 100%	(D) Zero					
94. The direction of flow of heat between	two bodies in thermal	contact is determined by:					
(A) Internal energies (B) kinetic energies	(C) potential energies	(D) atmospheric pressure					
95. Solid ice, Liquid water and water vapor	ırs consist in thermal equ	ilbrium at a Temperature:					
(A) 273 K (B) 273.16 K	(C) 273 °C	(D) 100 °C					
96. The Sum of all the energies of mole	cules is known as: (2 Ti	mes)					
(A) Elastic potential energy	(B) Kinetic energy						
(C) Internal energy	(D) Gravitational po	otential energy					
97. If temporature of sink is decresed, t	he efficiency of Carnot	engine.					
(A) Decreases	(B) Increases	the state of the s					
(C) Remain same	(D) First increases	then decreases					
00 at	4	and the age					
/All	ces (C) isobaric process	(D) isochoric process					
90 A	ing at the same time it	s internal energy					
increases to 400 loules, heat suppl	ied by the						
(^) 700 Joules (B) 400 Joules	(C) 1100 Joules	(D) 300 Joules					
10. According to first law of therm	odynamics the quantity	which is conserved is:					
(A) re- (B) momentum	(C) power	(D) energy					

101. What remains constant in adiab	atic process?	
(A) Volume (B) pressure	(C) entropy	(D) temperature
102. The SI unit of product of pressure	re and volume is:	
(A) Watt (B) Joule	(C) Pascal	(D) N.m
103. If C_p for a gas is $\frac{7R}{2}$ then the value	ie of C _v will be:	
	$(C)\frac{9R}{2}$	(D) R
104. Root mean square velocity is rela	ted to the absolute ter	mperature of a ideal gas as
(A) V _{rms} ∝T (B) Vrms ∝T ²	(C) $V_{\rm rms} \propto \sqrt{T}$	(D) $V_{rms} \propto \frac{1}{\sqrt{T}}$
105. If P= Pressure; V=Volume of a ga	as PΔV represent:	
(A) Work (B) Density	(C) Power 2021	(D) Temperature
106. Sadi Carnot described an ideal eng	and had beyond in	
(A) 1640 (B) 1740	(C) 1040	(D) 1840
107. A system does 600 J of work and a	t the same time intern	al energy increases by see
, The heat supplied is:	it the same time intern	ar energy increases by 3201
(A) 200 J (B) 600 J	(C) 280 I	(D) 920 J
108. If one mole of an ideal gas is hea	ted at constant volum	(D) 920 J
(A) $Qp = Cv \Delta T$ (B) $W = Cv \Delta T$	(C) $Ov = Cn \Lambda T$	(D) AII C AT
109. The K.E of molecules of an ideal	gas at absolute sees	$(D) \Delta U = C V \Delta I$
(A) Zero (B) Infinite 110. Pressure of an ideal gas can be as	(C) Very high	VIII De:
110. Pressure of an ideal gas can be wr	itten in terme of its do	(D) Below zero
(A) $P = \rho = \langle v^2 \rangle$ (B) $P = \frac{1}{3}\rho \langle v^2 \rangle$	(c) $P = \frac{2}{3} \rho < v^2 >$	(D) $P = \frac{1}{2} a < v^2 > 0$
inclinity of a carnot angine	ie.	
(A) Infinite (B) Zero	/01 -	£' - 1
	k while expanding and	one (D) Less than one
	exhallening ad	labatically. The change in
(A) 10 J (B) - 10 J	(C) 100 J	
113. A carnot engine operating between (A) 40k and 20k (B) 60k and 40k	on the s	(D) – 200 J
(A) 40k and 20k (B) 60k and 40k	(C) 80k and 60k	nas greatest efficiency:
(A) $Q_p = C_p \Delta T$ (B) $\Delta U = C_p \Delta T$ 115. In carnot engine, each process is	$(C)\Delta U = C \Lambda T$	then:
115. In carnot engine, each process is	, o	(D) $Q_p = C_v \Delta T$
(A) Reversible (B) Porfoctly rough		
116. If the Temperature of the source	increases the rec	(D) Perfectly irreversible
116. If the Temperature of the source (A) Decreases	(B) Increases	ncy of a carnot engine,
(C) Remains constant	. ,	
	(D) First increase th	en decreases
117. For mono atomic gas $C_v = \frac{3R}{2}$ there	fore nodes is:	
m 3/	10/1/	
(A) $\frac{3}{5}$ (B) $\frac{5}{3}$	(C) 7/15	(D) 15/4
118. Average velocity of molecules in		/4
(A) Zero (B) Positive		(0)

SI unit of molar specific heat is:

(A) J mol-1 K-1

(B) J mol K-1

205

(C) J mol K

(D) J mol-1

1	'/	200						C/ J	IIIOI:		/ 1	ו ע וכ	101		
			A	NSWI	RS O	THE	MUL.	TIPLE	CHOI	CE QU	ESTIC	NS			>
1	2	3	4		0	7	8	9	10	11	12	13	14	15	16
À	A	C	C	В	В	Α	C	В	В	A	A	D ·	В	В	C
17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Ä	A	D	С	A	В	Α	C	Α	С	C	A	С	В	A	В
33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
Ā	C	Α	С	Α	В	Α	D	В	С	Α	В	С	D	С	С
49	50	51	52	53	54	55	- 56	57	58	59	60	61	62	63	64
A	D	В	, D	С	Α	D	Α	Α	С	D	C	С	В	٠Α	С
65	66_	67	68	69	70	71	72	73	74	75	76	77	78	79	80
C	С	Α	. A	В	D	D	С	В	В	С	В	В	· C	Α	В
81	82	83	84	85	86	87	88	- 89	90	91	92	93	94	95	96
В	С	C	D	· D	A	В	С	Α	C	D	A	Α	Α	В	С
97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112
В	В	, C	D.	С	В	В	C	A	D	D	D	Α	В	D	В
113	114	115	116	117	118	119	1	0.0		- 9					-
D	Α	Α	В	В	Α	Α	7,076				2 × 1	٠.			

SHORT QUESTIONS OF CHAPTER-11 IN ALL PUNJAB BOARDS 2011-2021

Topic I: Kinetic Theory of Gases:

Write the four postulates of kinetic theory of gasses.

(11 Times)

i) A finite volume of gas consists of consists of very large number of molecules. Ans:

ii) The size of molecules is much smaller than the separation between them.

iii) The molecules do not exert force on each other except during a collision.

iv) The collision between gas molecules themselves and with the walls of container is assumed to be perfectly elastic.

Why is the average velocity of the molecules in a gas zero but the average of 2. the square of the velocities is not zero?

The motion of gas molecules is random. So the number of molecules moving in any direction with certain velocity is equal to the number of molecules moving in Ans: opposite direction with the same velocity. That is

$$\langle v \rangle = \frac{\langle v_x \rangle + \langle -v_x \rangle}{2} = 0$$

But the average of the square of velocities will not be zero because square of negative is always a positive number.

we number.
$$\langle v \rangle^2 = \frac{\langle v_x \rangle^2 + \langle -v_x \rangle^2}{2} \neq 0$$

(7 Times)

Derive Boyle's law from kinetic theory of gases.

According to kinetic theory of gases Ans:

 $PV = \frac{2}{3}N\left(\frac{1}{2}mv^2\right)$

When temperature is kept constant, then right hand side will be a constant.

Find the relation for work done by heat at constant pressure. 16.

Or Prove that $W = P\Delta V$ (4 Times)

Ans: Since

W = Fd $W = F\Delta Y$

Since

 $F \stackrel{\sim}{=} PA$

So

 $W = PA\Delta Y$

As Thus

21.

 $A\Delta Y = \Delta V$

 $W = P\Delta V$

17. What happens to the temperature of the room, when an air conditioner in left running on a table in the middle of a room?

Ans: No change will be observed because the heat is absorbed and expelled in the same room. Hence there will be no effect on the room's temperature.

18. Justify! Work and heat are similar.

Ans. Both work and heat are two different forms of energy. Both are measured in joule. For isothermal process 1st law of thermodynamics gives:

$$Q = W$$

Heat engine converts heat into useful work.

Topic IV: First Law of thermodynamics:

Can the mechanical energy be converted completely into heat energy? If so give an example.

(12 Times) Yes, the mechanical energy can be converted completely into heat energy. The Ans: adiabatic process is an example of such conversion. According to first law of thermodynamics

$$Q = \Delta U + W$$

When Q = 0, work done is negative so

$$0 = \Delta U - W$$
$$\Delta U = W$$

Stat First Law of thermodynamics, how it is applicable on human body. 20.

It states when heat Q is added to a system, this energy appears as an increase in Ans: the internal energy ΔU stored in the system plus the work done W by the system on its surroundings. Mathematically,

$$Q = \Delta U + W$$

Humans do works when the walk, talk or run and this work requires energy. Work done results in decrease in internal energy of body. i.e. law holds shape,

Hence the internal energy of body or temperature is maintained by the food we eat.

State the first law of thermodynamic. Write down its mathematical from. (4 Times) It states when heat Q is added to a system, this energy appears as an increase in Ans: the internal energy ΔU stored in the system plus the work done W by the system on its surroundings. Mathematically,

$$Q = \Delta U + W$$

Write two limitations of first law of thermodynamics. 22.

(i) 1st law of thermodynamics does not specify the conditions under which Ans: conversion of heat into work is possible.

(ii) It does not specify the direction in which heat transfer takes place (high to low or low to high).

(iii) The fact that heat cannot be completely converted into work, is a fact that the first law cannot explain.

23.

Explain bicycle pump as an example of 1st law of thermodynamics. Ans: 1st law of thermodynamics is based on law of conservations of energy. Mathematically, it states as

A bicycle pump provides a good example. When we pump on the handle rapidly, it becomes hot due to mechanical work done on the gas, raising thereby its internal energy.

What would be the heat lost if internal energy decreases by 10J and 20J of work is done on the system simultaneously.

Ans:

$$\Delta U = -10J$$

$$W = -20J$$

From 1st law of thermodynamics

$$Q = \Delta U + W = -10 - 20 = -30J$$

Negative sign shows that the heat is lost.

What is metabolism? How first law of thermodynamics explain it? OR How first 25. law of thermodynamics explain human metabolism?

Ans: Energy transforming processes that occur within an organism are named as

Humans do work when they walk, talk or run and this work requires energy. Work done results in decrease in internal energy of body. i.e. 1st law holds shape $\Delta U = Q - W$

Hence the internal energy of body or temperature is maintained by the food we eat.

Define Thermodynamics. 26.

Thermodynamics deals with various phenomena of energy and related properties of Ans: matter, especially the transformation of heat into other forms of energy.

Topic V: Molar Specific Heat of Gas:

27. Define C_P and C_V .

(3 Times)

Ans: C_P : The amount of heat transfer required to raise the temperature of one mole of gas through $1\,K$ at constant pressure is called molar specific heat at constant pressure. It is denoted by C_P .

 C_V :The amount of heat transfer required to raise the temperature of one mole of gas through 1 K at constant volume is called molar specific heat at constant volume. It is denoted by C_{ν} .

Specific heat of a gas at constant pressure is greater than specific heat at 28. constant volume why? (28 Times)

At constant volume, no work is done and the entire heat is utilized in raising the Ans: internal energy of the system.

But under constant pressure, heat is not only required to raise the internal energy but also to do work against constant pressure.

Hence specific heat of a gas at constant pressure is greater than specific heat at constant volume.

We talk about molar specific heat of gases but not talk about molar specific 29. heat of solids and liquids. Why?

In case of solids and liquids the change in volume and hence work done against Ans: external pressure during a change of temperature is negligibly small. But same can not be said about gases which suffer variation in pressure as well as in volume with the rise in temperature.

Topic VI: Reversible and Irreversible Processes:

Define reversible and irreversible processes. Give one example of each. (7 Times) 30.

What is meant by reversible process? Give its example. OR

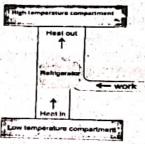
Reversible process: A process which can be retraced in exactly reverse order Ans: without producing any change in the surroundings is called reversible process. For example, melting of ice into water and freezing of water into ice. Irreversible processes: A process which cannot be retraced in the backward direction by reversing the controlling factors is called an irreversible process. For example, work done against friction.

No spark plug is used in Diesel Engine. How it gets ignition? 31.

Diesel is sprayed into the cylinder at maximum compression. Because air is at Ans: very high temperature immediately after compression, the fuel mixture ignites on contact with the air in the cylinder.

Topic VII: Heat Engine:

32. Define heat engine.


Ans: A device which converts heat energy into mechanical work is called heat engine.

33. What is Diesel Engine?

Ans: No spark plug is needed in diesel engine. Diesel is sprayed into cylinder at maximum compression. Because air is at high temperature after compression. fuel mixture ignites on contact with air in cylinder and pushes the piston outward. Its efficiency is about 35% to 40%.

Sketch the schematic diagram of refrigerator. 34.

Ans:

35. What is heat engine? Define efficiency.

Ans: A device which converts heat energy into mechanical work is called heat engine. Efficiency of heat engine is defined as output divided by input.

Percentage efficiency =
$$(1 - \frac{T_2}{T_1})100 \%$$

A real heat engine is less efficient than cannot engine. Why? 36.

Carnot engine operates in an ideal reversible cycle and ideal gas is used as the Ans: working substance.

No practical heat engine can be perfectly reversible. All real heat engines are less efficient than Carnot engine due to friction and other heat losses.

What is the similarity and difference between internal energy and gravitational P.E? 37.

Internal energy is similar to the gravitational P.E. So like the potential energy, it is Ans: the change in internal energy and not its absolute value, which is important. Internal energy depends upon temperature of the system while gravitational P.E depends on position of the particle.

How can the efficiency of real heat engine be increased? 38.

The efficiency of Heat Engine is given as: Ans:

$$\eta = \left(1 - \frac{T_2}{T_1}\right) \times 100\%$$

This shows that efficiency of engine can be increased by increasing temperature of source T_1 .

What is a refrigerator? Draw its block diagram. 39.

A refrigerator transfers heat from a low-temperature compartment to higher Ans: temperature surroundings with the help of external work. It is a heat engine operating in reverse order.

Topic VIII: Second Law of thermodynamics:

Is it possible to construct a heat engine that will not expel heat into the atmosphere?

No, it is not possible to construct a heat engine that will not expel heat into the Ans: atmosphere. It is against 2nd law of thermodynamics. A heat engine works only when some of the total heat absorbed from the source is expelled to a sink or atmosphere.

State second law of thermodynamics in terms of entropy. 41.

It states that If a system undergoes a natural process, it will go in the direction Ans: that causes the entropy of the system plus the environment to increase.

Write Kelvin statement of the second law of thermodynamics. 42.

It is impossible to devise a process which may convert heat, extracted from a single Ans: reservoir, entirely into work without leaving any change in the working system.

Explain with example that heat can be added to a system without heating. 43.

When two objects are rubbed together, work done is dissipated in the form of heat. Ans:

When an object slides over any surface and comes to rest because of frictional forces, work done is dissipated in the form of heat.

Topic IX: Carnot Engine and Carnot's Theorem:

What is the difference between isothermal and adiabatic process? (4 Times)

Ans: Isothermal process: The process in which temperature of the system remains constant is called isothermal process. T = constant. Adiabatic system: The process in which no heat enters or leaves the system is called adiabatic system. 0 = 0

45. Why adiabat is steeper than isotherm? Explain.

(3 Times)

Adiabat is steeper than isotherm because Ans:

slope of isotherm =
$$-\frac{P}{V}$$

And

$$slope \ of \ adiabat = -\frac{\gamma P}{V}$$

where $\gamma > 1$.

(4 Times) State Carnot's theorem.

46. It states that no heat engine can be more efficient than a Carnot engine Ans: operating between the same two temperatures.

Write down three example of adiabatic process. 47.

Three example of adiabatic process are Ans:

a. Cloud formation in the atmosphere

b. The rapid escape or air from a burst tyre,

c. The rapid expansion or compression of a gas through which sound wave is passing.

What is an Adiabatic Process? Also give its two examples. . 48.

Give an example of a process in which no heat is transered to or from a system OR but the temperature of the system changes. (2 Times)

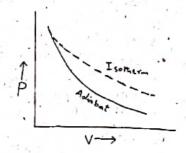
Adiabatic Process: An adiabatic process is the process in which no heat is transferred to or from the system but the temperature of the system changes. Ans: Examples: Passage of sound through the air, rapid escape of air from a burst tyre and cloud formation etc.

Define absolute zero using the Carnot cycle.

The Carnot cycle provides us the basis to define a temperature scale that is 49. independent of material properties. Absolute zero is the lower limit of the thermodynamic temperature scale, a state at which the enthalpy and entropy of a cooled ideal gas reaches its minimum value, taken as zero (0). By international agreement, absolute zero is taken as - 273.15°C.

51.

What is adiabatic process? Under what conditions this process occurs? 50.


Adiabatic Process: The process in which no heat enters or leaves the system but the temperature of the system changes. Adiabatic change occurs when the gas expands or is compressed rapidly,

particularly when the gas is contained in an insulated cylinder. Under what circumstances the efficiency of a Carnot engine will be 100 %? Is h possible?

Ans: No, it is impossible. The efficiency of a Carnot engine will be 100% only when cold reservoir is at absolute zero temperature (O K). Such reservoirs are not available and hence the maximum efficiency is always less than one or 100%.

52. In which process more work is done?

Ans: Work W = PV More work is done in isothermal process.

Carnot Cycle provides the basis to define a 53. temperature scale that is independent of material properties. Explain.

Ans: If heat Q is absorbed or rejected by the system at corresponding temperature? when the system is taken through a Carnot cycle and \mathcal{Q}_3 is the heat absorbed or rejected by the system when it is at the temperature of triple point of water, then unknown temperature T in Kelvin is given by

$$T = 273.16 \frac{Q}{Q_3}.$$

The ratio $\frac{Q}{2}$ depends only on the temperature of two heat reservoirs and is independent of the property of the working substance.

Topic X: Thermodynamics Scale of temperature:

What is thermodynamic scale of temperature? Give its unit. The thermodynamic scale of temperature is defined by choosing $273.16\,K$ as the Ans: absolute temperature of the triple point of water as one fixed point and absolute

The unit of thermodynamic scale is kelvin.

What do you mean by triple point of water? 55. Ans:

Its value is 273.16 K.

The triple point of water is a state in which ice, water and vapour coexists in equilibrium and it occurs uniquely at one particular pressure and temperature.

What is a triple point cell? Also define thermo dynamic scale. 56.

A triple point cell, in which solid ice, liquid water, and water vapour co-exist in Ans:

The thermodynamic scale of temperature is defined by choosing 273.16 K as the absolute temperature of the triple point of water as one fixed point and absolute zero, as the other. The unit of thermodynamic scale is kelvin.

What is triple point of water? Define Kelvin in terms of triple point of water. 57.

The temperature at which all the three states of water coexist is called tripple Ans: point of water. Its value is 273.16K.

One Kelvin is defined as $\frac{1}{273.16}$ of the thermodynamic temperature of the tripple point of water.

Topic XI: Petrol Engine:

Name the four strokes of the petrol engine.

(2 Times)

Four strokes of the petrol engine are Ans:

Intake stroke ii. Compression stroke iii. Power stroke iv. Exhaust stroke

Topic XII: Entropy:

Does entropy of a system increase or decrease due to friction? (9 Times) 59. Ans:

The entropy of a system increases due to the friction as work done against friction is changed into heat and heat added to the system increases its entropy.

Define entropy and write its relation. 60.

It is state variable of thermodynamic system and is a measure of disorder of Ans: molecules of a system. The relation for entropy change is,

Its unit is J/K.

Define entropy, how it changes with temperature. 61.

It is state variable of thermodynamic system and is a measure of disorder of Ans: molecules of a system. The relation for entropy change is,

Show that: Change in entropy is always positive.

Ans: Suppose an amount of heat Q flows from a reservoir at temperature T1 through a conducting rod to a reservoir at temperature T_2 when $T_1 > T_2$. The change in entropy of the reservoir which loses heat, decreases by $\underline{\mathcal{Q}}$ and of the reservoir

which gain heat increases by Q

 $T_1 > T_2 \text{ so } \frac{Q}{T_2} > \frac{Q}{T_1}$

Hence, net change in entropy

is positive

63. Define Entropy. Explain in terms of Second Law of Thermodynamics.

Entropy is a measure of disorder of molecules of a system.

The 2nd law of thermodynamics can be stated as "The total entropy of any system plus that of its environment increases as a result of any natural process". Thermal pollution is an inevitable consequence of this law.

A system absorbs 200 Joule heat at an absolute temperature 200 K. Calculate 64. the change in entropy.

Ans: $\Delta Q = 200J$ T = 200K

> $\Delta S = ?$ $\Delta S = \frac{\Delta Q}{T}$

65. What is degradation of energy?

Increase in entropy means degradation of energy. The energy goes from more orderly form to less orderly form.

For example, when hot and cold waters are mixed. Then warm water which results cannot be separated into a hot layer and a cold layer. There has been no loss of energy but some of the energy is no longer available for conversion into work.

Topic XIII: Enviromental Crises Entropy Crises:

Give an example of a natural process that involves an increase in entropy. 66. (2 Times)

The melting of ice into water due to high temperature of its surroundings results Ans: in an increase in entropy.

What is negative entropy? Give example and its unit. (2 Times) 67.

When heat is removed from the system, then it is referred as negative entropy. Ans: Conversion of water into ice in the refrigerator is an example of negative entropy. Its unit is JK^{-1} .

Increase in temperature will increase the entropy of the system.

68. Why the entropy of the universe always increase.

In all processes, heat flows from one system to another and there is always a net Ans: increase in entropy.

Suppose, the total energy passed from the hot region to the cold region is Q, the beginning temperature of the hot region is T₁ and the beginning temperature of the cold region is T2. So during the energy transfer, the hot region's entropy decreases by Q/T₁ and the cold region's entropy increases by Q/T₂. Since $T_1>T_2$ so Q/T_2 will be greater than Q/T_1 . Hence, net change in entropy = Q/T_2 - Q/T_1 is positive.

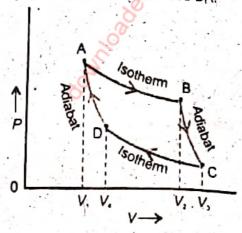
69. Calculate the work done during isothermal process?

"The process, in which temperature of the system remains constant is called an Ans: isothermal process".

As in isothermal process temperature remains constant, hence change in internal energy is zero i.e., $\Delta U = 0$. Apply 1st law of thermodynamics;

 $\Delta Q = \Delta U + W$ $\Delta Q = 0 + W$ $\Delta O = W$

Draw PV diagram which show four steps of Carnot engine. 70.


The operating cycle of Carnot engine is called Carnot cycle. A Carnot cycle consists of Ans: isothermal and adiabatic processes as shown in the PV diagram. It consists of following

Isothermal Expansion: The gas is allowed to expand isothermally at temperature Tu absorbing heat Q₁ from hot reservoir. This process is represented by the curve AB.

Adiabatic Expansion: The gas is then allowed to expand adiabatically until its temperature drops to T₂. This process is represented by the curve BC.

Isothermal Compression: The gas at this stage is compressed isothermally at temperature T2 rejecting heat Q2 to the cold reservoir. This represented by the

Adiabatic Compression: Finally, the gas is compressed adiabatically to restore in initial T₁. This process is represented temperature curve DA.

Prove that the maximum efficiency is always less than one or 100%. As, the efficiency is given as; Ans:

 $\eta = \left(1 - \frac{T_2}{T_1}\right)$

This expression tells that efficiency of Carnot engine depends upon the temperatures difference of two reservoirs. The larger the temperature difference, the greater is the efficiency. At absolute zero, $T_2 = 0$ K

$$\eta = \left(1 - \frac{r_2}{r_1}\right) = \left(1 - \frac{0}{r_1}\right) = 1 - 0 = 1 \text{ or } 100\%$$

But it can never be 100 % unless the cold reservoir is at absolute zero temperature (T₂ = 0 K). Such reservoirs are not available and hence the maximum efficiency is always less than one or 100%.

Find the average speed of oxygen molecule in the air at STP. 72.

Ans:

At S.T.P

$$T = 0 \, ^{\circ}C = 273 \, k$$

 $N_A = 6.022 \times 10^{23}$
 $k = 1.38 \times 10^{-23} \, Jk^{-1}$

Molecular mass of oxygen = $M = 32 g = 32 \times 10^{-3} kg$

Mass of one molecule of oxygen = $m = \frac{M}{N_A}$

of one molecule of oxygen =
$$\frac{32 \times 10^{-3}}{6.022 \times 10^{23}} = 5.14 \times 10^{-26} \text{ kg}$$

Since
$$T = \frac{2}{3k} < \frac{1}{2} \text{ mv}^2 >$$

$$< v^2 > = \frac{3kT}{m}$$

$$< v^2 > = \frac{3 \times 1.38 \times 10^{-23} \times 273}{5.14 \times 10^{-26}}$$

$$< v^2 > = 212693$$

$$< v > = \sqrt{212693}$$

$$< v > = 461 \text{ ms}^{-1}$$

A mechanical engineer develops an engine, working between 600 K and 300 73. K and claim to have an efficiency of 52%. Does he claim correctly? Explain.

K and claim to have an efficiency of 52%. Does he claim correctly? Ex
$$T_1 = 600~K$$

$$T_2 = 300~K$$

$$efficiency = \eta = ?$$

$$\eta = \left(1 - \frac{T_2}{T_1}\right) \times 100$$

$$\eta = \left(1 - \frac{300}{600}\right) \times 100 = 50~\%$$
 But the mechanical engineer claimed it to be 52 %. So, he claimed wrong. Starting from the relation of pressure of a gas prove that absolute terms.

Starting from the relation of pressure of a gas prove that absolute temperature of an Ideal gas is directly proportional to the average translational K. E. of gas 74. molecules.

Ans:

According to kinetic theory of gases;

$$PV = \frac{2}{3}N\langle \frac{1}{2}mv^2\rangle - \cdots (1)$$

and ideal gas equation;

Comparing eq. (1) and eq. (2)

$$NkT = \frac{2}{3}N\left\langle\frac{1}{2}mv^2\right\rangle$$
$$T = \frac{2}{3k}\left\langle\frac{1}{2}mv^2\right\rangle$$

$$T \propto \langle \frac{1}{2} m v^2 \rangle$$

Hence proved.

75. How can we increase the internal energy? Explain.

Ans: As a temperature increases, the molecules will move faster, thus have more kinetic energy and thus the internal energy will increase. 76.

Differentiate between internal energy of a substance and internal energy of an ideal gas. Ans:

The sum of all forms of molecular energies (kinetic and potential) of a substance is termed as its internal energy.

The molecules of an ideal gas don't exert forces on one another. So, the internal energy of an ideal gas system is generally the translational K.E. of its molecules. Since the temperature of a system is defined as the average K.E of its molecules, thus for an ideal as system, the internal energy is directly proportional to its temperature.

77. Define internal energy of a substance. Is it state function? Ans:

The sum of all forms of molecular energies (kinetic and potential) of a substance is termed as its internal energy.

By experiment it has been seen that the change in internal energy is independent of paths and it only depends upon change from initial to final state of the system. It is a function of state.

LONG QUESTIONS OF CHAPTER-11 IN ALL PUNJAB BOARDS 2011-2021

Topic I: Kinetic Theory of Gases:

1. Define pressure of a gas. Prove that $P = \frac{2}{3}N_o < \frac{1}{2}mv^2 > .$

Topic IV: First Law of thermodynamics:

2. Define first law of thermodynamics. Explain Isothermal and Adiabatic process. (3 Times)

Topic V: Molar Specific Heat of Gas:

Define Molar Specific Heat of a Gas at constant pressure (Cp) and at constant volume

Topic IX: Carnot Engine and Carnot's Theorem:

4. What is Carnot engine? Explain the Carnot cycle and calculate the efficiency of Carnot

5. What is a Carrot Heat Engine? Explain four process of Carrot's Cycle and derive

6. What is a Carnot heat engine? Show that efficiency of a Carnot heat engine depends on the temperatures of the hot and cold reservoirs.

7. Describe the construction and working of CARNOT engline. Also find its efficiency.

Topic XI: Petrol Engine:

8. Explain four stroke petrol engines in detail. What is the efficincey of a diesel engine?

NUMERICAL PROBLEMS OF CHAPTER-11 IN ALL PUNJAB BOARDS 2011-2021

Topic I: Kinetic Theory of Gases:

1. What is average translational kinetic energy of molecules in a gas at temperature 27 °C?

sol:

$$T = 27 \, ^{\circ}C = 27 + 273 = 300 \, K$$

 $Boltzmann \ constant = k = 1.38 \times 10^{-23} \, JK^{-1}$

Since

$$\langle K.E. \rangle = ?$$

$$T = \frac{2}{3k} \langle K.E. \rangle$$

$$\langle K.E. \rangle = \frac{3kT}{2}$$

$$\langle K.E. \rangle = \frac{3 \times 1.38 \times 10^{-23} \times 300}{2}$$

$$\langle K.E. \rangle = 6.21 \times 10^{-21} J$$

2. Estimate the average speed of nitrogen molecules in air under standard conditions of pressure and temperature. (7 Times)

Sol:

As given for N2 molecule

$$T = 0 \, ^{\circ}C = 0 + 273 = 273 \, K$$

$$P = 1 \, atm$$

$$Boltzmann \, constant = k = 1.38 \times 10^{-23} \, JK^{-1}$$

$$mass \, of \, N_2 \, molecule = m = \frac{molecular \, mass}{avogadro \, number}$$

We know that

$$\frac{28}{6.022 \times 10^{23}} = 4.65 \times 10^{-26} \, kg$$

$$\langle v \rangle = ?$$

$$T = \frac{2}{3k} \langle K.E. \rangle$$

$$T = \frac{2}{3k} \langle \frac{1}{2} m v^2 \rangle$$

$$T = \frac{m}{3k} \langle v^2 \rangle$$

$$\langle v^2 \rangle = \frac{3kT}{m}$$

$$\langle v^2 \rangle = \frac{3 \times 1.38 \times 10^{-23} \times 273}{4.65 \times 10^{-26}}$$

$$\langle v^2 \rangle = 2.43 \times 10^5$$

$$\langle v^2 \rangle = \sqrt{2.43 \times 10^5}$$

$$\langle v \rangle = 493 \, ms^{-1}$$

3. Find the average speed of oxygen molecule in the air at S.T.P. (4 Times)

Sol:

At S.T.P

$$T = 0^{\circ}C = 273 \text{ k}$$

 $N_A = 6.022 \times 10^{23}$
 $k = 1.38 \times 10^{-23} \text{ Jk}^{-1}$
Molecular mass of oxygen = M = 32 g = 32 x 10⁻³ kg

Mass of one molecule of oxygen =
$$m = \frac{M}{N_A}$$

$$m = \frac{32 \times 10^{-3}}{6.022 \times 10^{23}} = 5.14 \times 10^{-26} \text{ kg}$$

Since

$$T = \frac{2}{3k} < \frac{1}{2} \text{ mv}^2 >$$

$$< v^2 > = \frac{3kT}{m}$$

$$< v^2 > = \frac{3 \times 1.38 \times 10^{-23} \times 273}{5.14 \times 10^{-26}}$$

$$< v^2 > = 212693$$

$$< v > = \sqrt{212693}$$

$$< v > = 461 \text{ ms}^{-1}$$

Topic IV: First Law of thermodynamics:

4. A thermodynamic system undergoes a process in which its internal energy decreases by 300 J. If at the same time 120 J of work is done on the system. Find the heat lost by the system.

Sol:

Due to decrease in internal energy

$$\Delta U = -300 J$$

$$\Delta W = -120 J$$

$$\Delta Q = ?$$

From first law of thermodynamics

$$\Delta Q = \Delta U + \Delta W$$

$$\Delta Q = (-300) + (-120)$$

$$\Delta Q = -420 J$$

Heat loss by the system is negative.

Topic VII: Heat Engine:

5. The turbine in a steam power plant takes steam from a boiler at 427 °C and exhausts into a low temperature reservoir at 77 °C. What is the maximum possible efficiency?

Sol:

$$T_1 = 427 \, ^{\circ}C = 427 + 273 = 700 \, K$$
 $T_2 = 77 \, ^{\circ}C = 77 + 273 = 350 \, K$
efficiency = $\eta = ?$
 $\eta = \left(1 - \frac{T_2}{T_1}\right) \times 100\%$
 $\eta = \left(1 - \frac{350}{700}\right) \times 100\%$

We know that

6. A heat engine performs 100 J of work and at the same time rejects 400 J of heat energy to the cold reservoirs. What is efficiency of the engine? (6 Times)

$$work = W = 100 f$$

$$Q_{2} = 400 f$$

$$Q_{1} = ?$$

$$\eta = ?$$

$$W = Q_{1} - Q_{2}$$

$$Q_{1} = W + Q_{2}$$

$$Q_{1} = 100 + 400$$

$$Q_{1} = 500 f$$

We know that

And

$$\eta = \frac{w}{q_1}
\eta = \frac{100}{500}
\boxed{\eta = 0.2}$$

And percentage efficiency is

percentage efficiency =
$$0.2 \times 100$$

percentage efficiency = 20%

A mechanical engineer develops an engine, working between 327 °C and 27 °C and claim to have an efficiency of 52%. Does he claim (5 Times) correctly? Explain.

sol:

$$T_1 = 327 \, ^{\circ}C = 327 + 273 = 600 \, K$$
 $T_2 = 27 \, ^{\circ}C = 27 + 273 = 300 \, K$

$$efficiency = \eta = ?$$

$$\eta = \left(1 - \frac{T_2}{T_1}\right) \times 100$$

$$\eta = \left(1 - \frac{300}{600}\right) \times 100$$

$$\boxed{\eta = 50 \, \%}$$

We know that

But the mechanical engineer claimed it to be 52 %. So he claimed wrong.

Topic IX: Carnot Engine and Carnot's Theorem:

A Carnot engine utilizes an ideal gas. The source temperature is 227 °C and sink temperature is 127 ^{o}C . Find the efficiency of the engine.

Sol:

$$T_{1} = 227 \, ^{\circ}C = 227 + 273 = 500 \, K$$

$$T_{2} = 127 \, ^{\circ}C = 127 + 273 = 400 \, K$$

$$efficiency = \eta = ?$$

$$\eta = \left(1 - \frac{T_{2}}{T_{1}}\right) \times 100$$

$$\eta = \left(1 - \frac{400}{500}\right) \times 100$$

$$\eta = 20 \, \%$$

We know that

A carnot engine whose low temperature reservoir at 7°C has an efficiency of 50%. It is desired to increase the efficiency to 70%. By how much degrees the temperature of source be increased?

Ans:

Fource be increased:
$$T_2 = 7^0 C = (7 + 273) K = 280 K$$

$$T_1 = ?$$

$$\eta_1 = 50\%$$
We know that
$$\eta_1 = \left(1 - \frac{T_2}{T_1}\right) \times 100\%$$

$$50\% = \left(1 - \frac{280}{T_1}\right) \times 100\%$$

$$50 = 100 - \frac{280 \times 100}{T_1}$$

$$50 - 100 = -\frac{28000}{T_1}$$

$$\frac{28000}{T_1} = 50$$

$$T_1 = 560 K$$

$$T_2 = 280 K, T_1' = ?$$
Now
$$\eta_2 = 70\%, T_2 = 280 K, T_1' = ?$$

As
$$\eta_2 = \left(1 - \frac{T_2}{T_1'}\right) \times 100\%$$

$$70\% = \left(1 - \frac{280}{T_1'}\right) \times 100\%$$

$$70 = 100 - \frac{280 \times 100}{T_1'}$$

$$\frac{-2888}{T_1'} = -30$$

$$T_1' = 933 K$$
Increase in temperature
$$T_1' - T_1 = 933 - 560$$

$$= 373 K$$

Topic XII: Entropy:

. Calculate entropy change when 1 kg ice at 0 °C melts into water at 0 °C latent heat of fusion of ice $L_f = 3.36 \times 10^5 \, J/kg$. (5 Times)

Sol:

$$m = 1 kg$$

$$T = 0 °C = 0 + 273 = 273 K$$

$$L_f = 3.36 \times 10^5 \frac{J}{kg}$$

$$\Delta S = ?$$

$$\Delta S = \frac{\Delta Q}{T}$$

$$\Delta S = \frac{mL_f}{T}$$

$$\Delta S = \frac{1 \times 3.36 \times 10^5}{273}$$

 $\Delta S = 1.23 \times 10^3 \, J K^{-1}$ Thus entropy increases as ice changes into water.

336 J of energy is required to melt 1 g of ice at 0 o C. What is the change in entropy of 30 g of water at $0\,^{\circ}C$ as it is changed into ice at 0 °C by a refrigerator? (9 Times)

Sol:

heat of fusion =
$$L_f = \frac{336 J}{1 g}$$

 $L_f = \frac{336 J}{1 \times 10^{-3} kg} = 336000 \frac{J}{kg}$
mass = $m = 30 g = 0.03 kg$
 $T = 0 \, ^{\circ}C = 0 + 273 = 273 K$
 $\Delta S = ?$

Since entropy decreases to freeze water into ice, so ΔS will be negative.

$$\Delta S = -\frac{\Delta Q}{T}$$

$$\Delta S = -\frac{mL_f}{T}$$

$$\Delta S = -\frac{0.03 \times 336000}{273}$$

$$\Delta S = -36.8 JK^{-1}$$

Board Papers 2019

SAHIWAL BOARD

SAHIWA	L BOARD	
physics (New Scheme) (Group - 1-0		Time: 20 Minutes
Session (2019) Object	lvo.	Marks: 17
Note: You have four choices for each ohi	active type question	as A B C and D The
choice which you think is correct; fill that	circle in front of that	guestion numbe with
marker or pen. Cutting of filling two	circle in front of that	question numbr with
marker or pen. Cutting of filling two or n question.	nore circles will result	t in zero mark in that
The speed of office to be	4.	
1. The speed of efflux is equal to the veloc	ity gained by the falli	ng fluid under the
action of gravity through a certain heigh	ht is called:	
(A) Torricelli s theorem (B) Bernoulli's theor	em(C) Stoke's theorem	(D) Venturi's theorem
2. Formula ben racing cars have a:		· V
(A) steamlined design (B) turbulented design	n (C) rectangular desig	n (D) elliptical design
3. The frequency of waves produced in m	icrowave oven is:	
	(C) 2400 MHz	(D) 2750 MHz
4. The number of beats produced per sec.	in two tuning forks is	equal to:
(A) Sum of two frequencies (B	ratio of two fragues	equal to.
) ratio of two frequence	iles
(C) the frequency of either of two tuning fork (D	the difference of the freq	uencies of two tuning forks
5. When a mirror of Michelson interferon		nce or 0.5 mm, then
2000 frings are observed, the waveleng		V.
(A) 5000x10 ⁻¹⁰ m (B) 5000x10 ⁻⁹ m		(D) 5000x10 ⁻⁷ m
6. The waves which do not require any m		
(A) mechanical waves (B) matter waves (C) electromagnetic wave	s (D) longitudinal waves
7. Microphone converts.	the first of the te	y-
(A) electrical signal into sound signal	(B) electrical signal in	to light signal
(C) light signal into electrical signal	(D) sound signal into	electrical signal
8. No entropy change takes place in.		.9
(A) isothermal process (B) adiabatic proce	es (C) isobaric process	(D) isochoric process
9. A system does 700 Joules of work and	at the same time its in	ternal energy
increases to 400 Joules, heat supplied	by the source is:	, "Satore Tapole e dili
(A) 700 Joules (B) 400 Joules	(C) 1100 Joules	(D) 300 Joules
	(0) 2200 100.00	7
10. Light year is the unit of:	(C) energy	(D) time and distance
(A) time (B) distance	(C) energy	- 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
11. How many years in one second:	(C) 2 1 v 10.8 voors	(D) 2 1 × 108 years
(A) 3.1536x10 ⁷ years (B) 1.536 years	(C) 3.1 x 10 years	(D) 3.1 x 10 years
12. Magnitude of unit vectors $\hat{i} \times \hat{j}$ is.	×2 × ×	
	(C) $-\hat{j}$	(D) $+\hat{k}$
(A) 1 (B) -1		
13. If cross product of two vectors $\vec{A} \times \vec{B}$ p	oints along positive z-	axis, then the vectos
7 - I D lio in		1 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
	(C) xy – plane	(D) No plane
(A) yz – plane (B) xz – plane 14. If a shell explodes in mind air, its frag	ments fly off in differe	nt directions. The total
14. If a shell explodes in milituali, its its	0	League 2 2 2
momentum of the fragments.	(C) becomes zero	(D) remains the same
(A) decreases (B) increases	chiect to go out from	the gravitational field
(A) decreases (B) increases 15. The maximum velocity required of an	Object to Bo out mann	
in heavenly hady is:		(D) earth
(A) moon (B) mercury	(C) mars	near velocity and
(A) moon (B) mercury 16. When a body moves in a circular path, t	ine angle between its ii	near velocity and
anaulauvolocity is	(0) 000	(D) 45°
	(C) 90°	(0) 43
(A) 180° (B) zero degree 17. In one revolution the angular displace	ment covered is:	(D) 1000
(A) 60° (B) 360°	(C) 90°	(D) 180°

Physics (New Scheme) Session (2019)

SAHIWAL BOARD (Group - I, Class 11th) Subjective SECTION - I

Time: 2:40 Hours Marks: 68

Write short answers to any EIGHT parts.

Give the drawbacks to use the period of simple pendulum as time standards.

II. How the digit 5 if, insignificant, will be rounded off?

Define the terms. (a)Unit vector (b) Position vector and write their mathematical expressions. III.

Is it possible to add a vector quantity to a scalar quantity ? Explain. iv.

How would the two vectors of the same magnitude heave to be oriented, if they were to ٧. be combined to give the resultant equal to a vector of the same magnitude?

Calculate the work done in kilo joules in lifting a masss of 10 kg (at a steady velocity) vi. ,

through vertical height of 10m? vii.

What sort of energy is in the following? a) comprossed spring b) a moving car A person is standing near a fast moving train. Is there any danger that he will fall towards it? ix. In a orbiting space station, would the blood pressure in major arteries in the legs ever be

greater than the blood pressure in major arteries in the neck?

What is meant by phase angle? Does it define the angle between maximum displacement and the driving force? xi.

Differentiate between Resonance and Damping.

xii. Under what conditions does the addition of two simple harmonic motions produce a resultant, which is also simple harmonic?

3. Write short answer to any EIGHT parts.

State Law of Conservation of Momentum. What is its limitation?

II. Explain the circumstances in which the velocity $ec{v}$ and acceleration $ec{a}$ are parallel and anti parallel.

If angle of projection of a projectile is 90°. Find its range. III. How can acceleration be found by velocity-time graph? iv.

What is meant by weightlessness?

vi. Prove that orbital angular momentum depends upon the radius of the orbit. vii.

What is meant by moment of inertia? Explain its significance.

viii. Derive relation $S = r\theta$.

ix. What do you know about radar speed trap?

What are the quantities which affect the frequency of standing waves along a string? x. xi.

xii.

What are the conditions for points which are in phase and out of phase? As we know PV γ = Constant. What do you know about γ in this relation?

4. Write short answer to any SIX parts.

i. Define the term Wavefront.

How would you manage to get more orders of spectra using diffraction grating? ii.

Explain whether the Young's experiment is an experiment for studying interference or iii. diffraction effects of light.

Why would it be advantageous to use blue light with a compound microscope? iv. Define critical angle and least distance of distinct vision.

vi. State First Law of Thermodynamics.

Does the entropy of a system increase or decrese due to friction? vii.

Explain why molar specific heat at constant pressure is greater than specific heat a viii. constant volume.

A thermos flask containing milk as a system a shaken rapidly. Does the temperature of milk rise? SECTION - II

Attempt any THREE questions. Each question carries 08 Marks.

5.(a) Show that pressure exerted by the gas is directly proportional to the average translation kinetic energy of the gas molecules.

(b) Show that the expression $v_j = v_i + at$ is dimensionally correct, where v_i is the velocity at t = 0, a is acceleration and v_i is the velocity at time t.

6.(a) What do you mean by torque? Derive the expression for the torque acting on a rigid body. (b) A ball is thrown horizontally from a height of 10 m with velocity of 21 ms⁻¹. How far off it will hit the ground?

7. (a) Describe Newton's formula for the speed of sound in air and explain how it was corrected by Laplace?

(b) A car of mass 800kg travellig at 54 km/h is brought to rest in 60 meter. Find average retarding.

8. (a) Define simple produlum. Show that motion of simple pendulum is simple harmonic motion. Also derive expression for its time period.

(b) What should be the orbiting speed to launch a satellite in a circular orbit 900 km above the What should be the orbiting speed to latitude a satellite in a circular orbit 900 ki surface of the earth. Mass of earth = 6×10^{24} kg and radius of earth = 6400 km.

9. (a) Describe the Young's double slit experiment to derive the relation for fringe spacing. (b) A telescope is made of a objective of focal length 20cm and an eye piece of 5.0 cm, both are convex lenses. Find the angular magnification.

hysics (New Scheme)	<u>D.G.K.</u> (Group – I –Cl	Time : 20 Minutes		
ession (2019)			Marks: 17	
	choices for each oh	Objective noices for each objective type question		
hoice which you thin	t question numbr with			
narker or pen. Cuttin	of filling two or a	nore circles will resul	It in zero mark in that	
avestion.	o so mining two of f	note circles will resul	in zero mark in the	
. The prefix femto is	s equal to:			
	(B) 10 ⁻¹²	(C) 10 ⁻¹⁴	(D) 10 ⁻¹⁵	
2. The time taken by	• •		(5) 20	
(A) 1 min 10 sec.		(C) 1 min 30 sec.	(D) 1 min 40 sec.	
		product of two vector		
	angle between vector			
(A) 30°	(B) 6	(C) 120°	(D) 180°	
		ors each of magnitude		
(A) A	(B) 2A	(C) √2 A	(D) A ²	
5. Ballistic missiles	• •	(C) VZ A	(0) A	
		(C) very long ranges	(D) any range	
	tric heater is (approx		(5) 4, 1464	
(A) 1 KW	(B) 2 KW	(C) 3 KW	(D) 4 KW	
	, ,	• •	clude that his weight has:	
(A) Increased	(B) Decreased	(C) Reduced to zero		
* *	atellites in global po	sitioning system is:	6	
(A) 3	(B) 12	(C) 24	(D) 36	
	iroplet becomes half	, then terminal velocit	y will become:	
(A) Half	(B) Four times	(C) One third	(D) One fourth	
10. The systolic pre	ssure for a normal he	ealthy person is:	2	
(A) 75 - 80 torr	(B) 100 torr	(C) 120 torr 🔑	(D) 140 torr	
11. If the length of	simple pendulum is d	loubled then its time r	eriod becomes.	
(A) half	(B) 2 times	(C) $\sqrt{2}$ times	(D) 4 times	
12. The speed of so	ound in vacuume is:	N. C.	1_1_	
(A) 220 mc-1	(B) 332 ms ⁻¹	(C) 3 x 10 ⁸ ms ⁻¹	(D) Zero	
13. IT becomes diff	ficult to recognize the	beats when the diffe	rence between the	
frequencies of	two sounds is more t	han.	'(D) 40 Hz	
(A) 10 Hz	(B) 20 Hz	(C) 30 Hz	(D) 40 Hz	
	ht around the edges	of an obstacle is called (C) polarization	(D) diffraction	
(A) Refraction	(B) interference	value of refractive inde		
	step index liber, the	(C) 1.67	(D) 1.48	
(A) 1.33	(B) 1.52			
141 700/	ate efficiency of dry o	(C) 30%	(D) 93%	
(A) 70%	as the P.E. associated	with its molecules is	equal to:	
	(B) $\frac{1}{2}$ KX $_0^2$	(C) 2 KX ₀	(D) Zero	
$(A)^{\frac{1}{2}}KX$	(0) 2 10.0	1		

Marks: 68

Time: 2:40 Hours

Physics (New Scheme) Session (2019)

D.G.K. BOARD (Group -I, Class 11th) Subjective

SECTION - I

Write short answers to any EIGHT parts. Give the drawbacks to use the period of pendulum as a time standard.

11. Is zero significant or not? Explain?

iii. Define the null vector and give two examples.

Is it possible to add a vector quantity to scalar quantity? Explain. iv. Can a body rotate about its centre of gravity under the action of its weight? Explain briefly

Can a body rotate about its centre of gravity under the deces. What energy changes are A girl drops a cup from a certain height, which breaks into pieces. What energy changes are vi. involved?

Define kilowatt hours and show that 1 KWh=3.6 MJ. vii.

Why fog droplets appear to be suspended in air? Explain briefly viii.

ix. Write the three characteristics of an ideal fluid.

Name two characteristics of simple harmonic motion. x.

xì. State Hoo's law. Give SI unit of spring constatnt. xii. What is driven harmonic oscillator? Give example.

3. Write short answer to any EIGHT parts.

At what point or points in its path does a projectile have its minimum speed, its maximum i. speed?

Explain the difference between a) Elastic collision and b) In-elastic collision. ir.

State and derive second law of motion in terms of momentum.

iv. What is a) Ballistic missile b) Ballistic Trajectory.

٧. Define angular velocity and give its formula.

vi. Prove that $a = r \propto$

vii. State the direction of the following vectors in simple situation.

a) Angular momentum b) Angulary velocity. viii. What is meant by moment of inertia? Explain its significance.

ix. Exlain the effect of variation of density on the speed of sound in gas.

Give the rules for the reflection of waves from the boundary of a. ... a) denser medium b) rarer medium

xi. Explain why sound travels faster in warm air than in cold air?

Is it possible for two identical waves travelling in the same direction along a string to give rise to xii. a stationary wave? Explain

4. Write short answer to any SIX parts.

Can visible light produce the interference fringes? Explain. i. An oil film spreding over wet foot path show colours. Explain. ii.

What are Newton's rings? Explain briefly. iii.

iv. Define resolving power and the magnification. ٧.

If person was looking through telescope at the full moon, how would the appearance of moon be changed by covering half of the objective lens? vi.

Internal energy is a state function. Explain. Give two examples of the adiabatic process. vii.

Is it possible to construct a heat engine without sink? Explain. viii. ix.

Does entropy of a system increase or decrease due to friction? Explain.

SECTION -II Attempt any THREE questions. Each question carries 08 Marks.

5.(a) Defie Molar specific heat at constant pressure and at constant valoume and also derive

(b) Calculate, how many seconds are there in one year and many years in one second? 6.(a) What is scalar product of two vectors? Discuss its four characteristics.

(b) A truck weighing 2500 kg and moving with a velocity of 21 ms⁻¹ collides with a stationary car weighing 1000 kg. The truck and the car move together after the impact. Calculate their

7. (a) Show that frequencies of stationary waves in a stretched string are quantized. (b) A car of mass 800 kg travelling at 54 km/h is brought to rest in 60 meters. Find the average retarding force on the car. What has happened to original kinetic energy?

8. (a) Define centripetal force and derive its relation.

(b) A block of mass 4.0 kg is dropped from a height of 0.80 m on the a spring of spring

9. (a) Describe the construction of a simple microscope and derive and expression for its

(b) In a double slit experiment the second order maximum occurs at θ=0.250. The wavelength

	SARCODU		a
physics (New Scheme)	SARGODH	A BOARD	mi a consideration
Session (2019)		ss 11 th)	Time: 20 Minutes
You have four o	Objecti	ve	Marks: 17
Note: You have four c	noices for each obj	ective type question	as A, B, C and D. The
SUDICE MILITARY LAND SHILLING	19 COLLECT, till that	alrala in front of that	augstion numbt with
Walker or barry agreeme	of filling two or m	ore circles will result	t in zero mark in that
VARACION!		* , 191 F. F.	
1. The term 134.7 can	be written scientific	notation as:	
(A) 1,34/ X 10- (E	3) 1,347 x 10 ³	(C) 1 347 \times 101	(D) 1.347 x 10 ⁴
2. The quantity 0.0046	7 has significant figu	UPOS	(5) 213 17 11 23
(A) 3 (E	11 4		(D) 6
3, If two components		Lin magnituda tha us	otor making angle
with x-axis will be.	of a vector are equa	i in magnitude, the ve	ctor making angle
(A) 30° (I	D\ 4E0	101 000	in\'000
1 ,	•	(C) 60°	(D) 90°
4. Two forces of magn	litudes 10 N and 20 I	N act on a body in dire	ections making angle
of 30°, the X-compo	onent of the resultar	nt force will be:	
		(C) 20.98 N	
5. If maxium height o	f the projectile is equ	ual to the range then a	angle of projection of
projectile will be:			
		(C) 60°	
6. If 50 kg crate is pus	shed through 2 m acr	ross the floor with a fo	orce of 50 N, the work
done will be:			
(A) 245 J	B) 150 J	(C) 200 J	(D) 100 J
7. A body rotates with	a constant angular v	elocity of 100 rad/sec	about a vertical axis the
required torque to	sustain his motion wi	ll be.	0
(A) zero Nm	B) 100 Nm	(C) 200 Nm	(D) 300 Nm
9 Moment of inertia	of 100 kg sphere has	ving radius 50 cm will	be. 🧐
(A) 10 Va m ²	(B) 5 Kg m ²	(C) 500 Kg m ²	(D) 2.5 Kg m^2
O Laminar flow occu	re at:	1.10 5.9	
9. Laminar flow occu	(D) Low speed	(C) Zero speed	(D) very high speed
10. High concentration	of rod blood cells it	creases the viscosity	of blood from.
10. High concentration	of Lea blood cells !!	(B) 3 - 5 times that o	fwater
(A) $2-3$ times that	- fountage	(D) $7 = 9$ times that o	f water
(C) 5 - 7 times that	of water	estion us 20 cm. The a	mplitude of the
(C) 5 – 7 times that 11. Distance covered	by a body in one vibi	ation as 20 chir rive a	mpilitaes of the
vibration will be.		(C) 15 cm	(D) 20 cm
(A) 10 cm	(B) 5 cm	then in Ovigen his time	AC!
(A) 10 cm 12. Speed of sound in	Hydrogen is higher t	Wall in OxAReii BA riiii.	(D) 16
(A) 4	(B) b	(C) 8	(6) #6
13. Sound waves can	not pass through.	No. Ala	(D) Vacuum
(A) Liquid	(B) Solids	(C) Air	light?
		uce colours with white	(D) Dispersion
(A) Diffraction	(B) Interference	(C) Polarization	(A) Alaberateu
(A) Diffraction 15. The image former	by eyeplece of com	pound microscope is:	had
(A) Real and mag	nified	(B) Real and diminis	neg .
(A) Real gills liles	arge	(D) Virtual and dimi	misned
(C) Virtual and Sin	w of heat between t	wo bodies in thermal c	ontact is determined by:) atmospheric pressure
49. The direction of the	s (B) kinetic energies	wo bodies in thermal c (C) potential energies (D 0% when its sink temp	perature is 270 °C. The
(A) internal energie 17. A carnot engine h	as an efficiency of 50	0% when its sink temp	elatric is the culting
47. A carnot engine	ource is.		(D) 273 °C
temperature of se	(B) 327 °C	(C) 373 °C	(D) 213 .A
(A) 300 °C	(8) 30.		

Physics (New Scheme) Session (2019)

SARGODHA BOARD

(Group -I, Class 11th) Subjective SECTION - I

Time : 2:40 Hours Marks: 68

2. Write short answers to any EIGHT parts.

Write any two points which should be kept in mind, while using units.

II. How many micro seconds one year?

ш. Find the angle between $\vec{A} = 2\hat{i} - 2\hat{j}$ and $\vec{B} = 2\hat{i} + 2\hat{j}$

Iv. Can the magnitude of a vector ever be zero? Explain.

What are the steps, taken to add vectors by rectangular components?

vi. in which case more work is done, when a 50 kg crate is pushed through 10 m across a floor with a force of 30 N or same crate is lifted through 5 m height? vii.

Derive work-energy principle.

vIII. Explain, how the swing is produced in a fast moving tennis ball? ix. What you know about viscosity and what is its effect on drag force?

What are the factors on which frequency of a spring-mass system depends? x, xl. What is the difference between free and driven harmonic oscillators? xII.

Explain phase and initial phase.

3. Write short answer to any EIGHT parts.

Can the velocity of an object reverse direction when acceleration is constant? If so give an example,

Define impulse and show how it is related to linear momentum. III.

What does the slope of velocity-time graph represent? ĺ٧.

An object is thrown vertically upward. Discuss the sign of acceleration due to gravity, relative to velocity while the object is in air.

Define angular velocity. How its direction is determined? vI.

Prove that 1 radian = 57.3° vii.

When mud files off the tyre of a moving bicycle. In what direction does it fly? Explain. vill.

Show that angular momentum, Lo = mvr ix.

What is difference between interference and beats? x.

What is the difference between constructive and distructive interference? xl.

Explain why sound travels faster in warm air than in cold air? xii.

How should a sound source move with respect to an observer so that the frequency of its

Write short answer to any SIX parts.

Can visible light produce interference fringes? Explain.

Why the Polaroid sungleasses are better than ordinary sunglasses? II. III.

How coherent light beams can be produced? Explain.

How the light signal is transmitted through the optical fibre? iv. v.

How can the resolving power of compound microscope be increased? vI.

Specific heat of a gas at constant pressure is greater than specific heat at constant volume. Why? is it possible to convert Internal energy into mechanical energy? Explain with example. vii.

What would be average speed of oxygen molecule in the air at S.T.P.? vill.

Differentiate between isothermal and adiabatic process. ix.

SECTION - II

Attempt any THREE questions. Each question carries 08 Marks.

5.(a) What is Carnot engine? Discuss carnot cycle, also derive expression of its efficiency. (b) Suppose, we are told that the acceleration of a particle moving in a circle or radius r with uniform speed is proportional to some power of r, say r" and some power of v, say v",

6.(a) What is isolated system? Also state and explain the law of conservation of linear momentum.

(b) Two particles are located at $\vec{r_2} = 3\hat{i} + 7\hat{j}$ and $\vec{r_2} = 2\hat{i} + 3\hat{j}$

7. (a) Define Doppler effect. Discuss the case when source moves towards the stationary observer and when observer moves towards the stationary source.

(b) A brick of mass 2 kg is dropped from a rest position 5 m above the ground. What is its

8. (a) What is meant by gravity free system. How gravity like earth is produced in a space ship?

(b) A simple pendulum is 80 cm long what will be its period and frequency at a place where # *

9. (a) What is magnifying glass? How is it used as a microscope? Derive the relation for its magnifying power?

(b) In a double slit experiment, the second order maximum occurs at $\theta \approx 0.25^\circ$, The wavelength is 700 nm. Determine its silt separation?

	Multa	n BOARD	
physics (New Scheme	(Group - I-Cl	ass 11 th) Time	: 20 Minutes
neelon (2019)	Oblec	tive	Marks: 17
Note: You have four	choices for each of	bjective type questio	n as A, B, C and D. The
hoice which you this	nk is correct; fill tha	t circle in front of th	at question numbr with
marker or pen. Cutti	ng of filling two or	more circles will res	ult in zero mark in that
question.			
Tidal energy is du	e to the gravitations	I pull of:	
(A) Sun	(B) Moon	(C) Earth	(D) Mars
2. Moment of inerti	a for a particle is giv	en by:	
(A) m ² r ²	(B) mr ²	(C) m ² r	(D) mr ⁻²
3. S.I unit of angular	r momentum is:		
(A) Kg m ² s ⁻¹	(B) Kg m ⁻² s ⁻²	(C) Kg m ⁻¹ s	(D) Kg m ² s ⁻²
4. Fluid dynamics is	the study of the bel	navior of:	
(A) Fluid at rest		(B) Liquids at rest	
(C) Liquids in mo	tion	(D) Liquids and ga	ses in motion
5. Blood has densit	y equal to that of:		
(A) OII		(C) Thick tar	(D) Water
	.H.M is proportional	to the:	
(A) Velocity	(B) Displacement	(C) Time period	(D) Water
7. If speed of sound	in air at a given pres	sure is "V" and now if	pressure is doubled then
new speed will b		a side of York to	
·	(B) V/2	(C) V	(D) 4V
8 Stars moving av	ay from Earth show		8
(A) Red shift	(B) Blue shift	(C) Green shift	(D) Yellow shift
9. In case of point	source, shape of the	wavefront is:	
(A) plane	(B) spherical	(C) circular	(D) ellipitical
10. Magnifying pow	er of telescope is:		
$(A) f_0 + f_0$	(B) fo - fo	(C) $\frac{f_o}{f_e}$	$(D) \frac{f_e}{f_o}$
(A) / 0 + / a	(D))0)e	law of thermodynami	ic is written as:
11. In case of adiab	atic process, the 1	law of thermodynam (C) W = Q - ΔU	(D) W = -ΔU
$(A) W = \Delta U$	(B) W = Q	the officiency of Carni	ot engine.
12. If temperature	of sink is decresed, t	he efficiency of Carno (B) Increases	J. C
(A) Decreases		(D) Hickenses	es then decreases
(C) Remain san		(D) First mercus	
13. Which is the ba	ise quanity?	(C) Length	(D) Density
(A) Area	(B) Volume	(C) Length	flaures:
14. If least count i	s 10 kg, then 8.00 x	103 kg has significant	(D) 4
(A) 1	(B) 2	(C) 3	a time of flight will
15. If the initial ve	locity of a projectile	becomes doubled. The	
become:			
IN Bauble	(B) Same	(C) 3 times	
16. Unit vactor of	given vector A =41	+ 3 / IS.	
Othe Agerol Ol c		(c) $\frac{4\hat{l}+3\hat{j}}{5}$	$(D) \sqrt{\frac{4\hat{l}+3\hat{j}}{5}}$
(A) $\frac{4\hat{l}+3\hat{j}}{25}$	(B) 1	(C) <u>5</u>	1 5
17. Time of flight	of a projectile is:	$(C) \frac{Vl^2 \sin \theta}{a}$	$(D) \frac{2Vl \sin \theta}{a}$
(A) Vi sino	(A) Visine	(C) = a	(5) g

Marks : 68

Time : 2:40 Hours

2.

MULTAN BOARD (Group -I, Class 11th Subjective SECTION - I

Physics (New Scheme) Session (2019)

Write short answers to any EIGHT parts.

What is the cause of random error and how can it be reduce? If a precise measurement is also an accurate measurement. Explain your answer, II.

is it possible to add 5 in 2/? Explain. III.

Can the magnitude of a vector ever be negative? Explain. If a vector lies in x - y plane. Is it possible, one of its rectangular components is zero? iv.

ν. Define conservative force. Give at least its two examples. vi.

vii. Explain Geyser and Aquifer.

Why fog droplets appear to be suspended in air? viii.

Derive the relation between speeds a pressure of the fluid. ix.

What is damping and give its one application.

How does resonance play role in heating and cooking food? xi.

If mass of a simple pendulum is doubled, what is the effect on its period? Explain, xii.

Write short answer to any EIGHT parts.

What are two differences between uniform and variable velocity?

Can the velocity of an object reverse the direction when acceleration is constant? If so, give ii. an example.

Explain the two differences between Elastic and in-elastic collision. III.

How would you find the distravelled by velocity-time graph? ĺ٧,

Show that: $S = r \theta$ (Where θ is in radian).

vi. Show that velocity of hoop rolling down on an inclined plane is; $v = \sqrt{gh}$.

vii. What is meant by moment of inertia? Explain.

viii. Why does a diver change his body positions before and after diving in the pool?

ix. Write down two differences between Transverse and longitudinal waves.

Explain the terms Crest and Trough,

xi. Why does sound travel faster in solids than in gases?

How are beats useful in tuning musical instruments? Explain. xii.

4. Write short answer to any SIX parts,

į, How is the distance between interference fringes affected by the separation betweenth slits of Young's experiment? Can fringes disappear?

An oil film spreading over a wet footpath shows colours. Explain how does it happen? ii. Write two differences between interference and diffraction phenomena of light waves. III.

Describe two causes of power losses in optical fibre during transmission of light signals. ίv.

Why would it be advantageous to use blue light with a compound microscope? ٧.

Specific heat of a gas at constant pressure is greater than specific heat at constant volume vi. Why?

Does entropy of a system increase or decrese due to friction? Explain. vii.

Give an example of a natural process that involves an increase in entropy. vili. Define triple point of water and write its equation. ix.

SECTION - II

Attempt any THREE questions. Each question carries 08 Marks.

5.(a) What is the difference between Petrol Engine and Diesel engine? Explain the four stroked

(b) Derive a relation for the time period of a simple pendulum by using Dimensional analysis. 6.(a) What is Troque? Derive an expression for torque due to force acting on a rigid body.

(b) A homber dropped a bomb at a height of 490m when ites velocity along the horizontal was 300 Kmh1, How long was it in air?

7. (a) Explain work done in gravitational field. Also define conservative field.

(b) A stationary wave is established in a string which is 120cm long and fixed at both ends. In string vibrates in four segments, at a frequency of 120cm long and fixed at both ends. string vibrates in four segments, at a frequency of 120 Hz, Determine tis wavelength and

8. (a) Define simple harmonic motion. Prove that the projection of a particle moving along a circular path performs simple harmonic motion.

(b) What is the least speed at which an aeroplane can execute a vertical loop of 1km radius that there will be no tendency for the pilot to fall down

that there will be no tendency for the pilot to fall down at the highest point?

9. (a) Discuss the Young's double slit experiment and determine the position where the dark bright fringes will be observed.

(b) A glass light pipe in air will totally internally reflect a light ray if its angle of incidence is least 39°. What is the minimum angle for total internal reflection if pipe is in water? (Refractive index of water = 1.33)

yels (New Steins) (Group - I-Class 11th) Time: 20 Minutes yellon (2019) Objective Marks: 17 (20 Marks: 17) (20 Marks: 17) (20 Marks: 17) (21 Marks: 17) (21 Marks: 17) (22 Marks: 17) (23 Marks: 17) (23 Marks: 17) (24 Marks: 17) (24 Marks: 17) (25 Marks: 17) (26 Marks: 17) (26 Marks: 17) (27		GUJRANWAL	A BOARD	
pignol (2019) Objective Marks: 17 (yet you have four choices for each objective type question as A, B, C and D. The pige which you think is correct; fill that circle in front of that question numbr with piker or pen. Cutting of filling two or more circles will result in zero mark in that pighter or pen. Cutting of filling two or more circles will result in zero mark in that pighter or pen. Cutting of filling two or more circles will result in zero mark in that pighter or pen. Cutting of filling two or more circles will result in zero mark in that pighter or pen. Cutting of filling two or more circles will result in zero mark in that pighter or pen. Cutting of filling two or more circles will result in zero mark in that pighter or pen. Cutting of filling two or more circles will result in zero mark in that pighter or pen. Cutting of filling the pighter or pen. Cutting of filling two or more circles will result in zero mark in that pighter or pen. Cutting of filling the pighter or pen. Cutting of filling the pighter or pen. Cutting of filling the pighter or pen. Cutting of filling two pighter o	ysics (New Scheme)	(Group - I-Cl	ass 11 th)	Time : 20 Minutes
Het You have four choices for each objective type question as A, B, C and D. The object which you think is correct; fill that circle in front of that question numbr with after or pen. Cutting of filling two or more circles will result in zero mark in that easilism. The magnifying power of convex lens of focal length 10cm is: (A) 7 (B) 9.6 (C) 3.5 (D) 11 [A] AB Sin Θ = AB Cos Θ the the angle between A and B is: (A) 30° (B) 45° (C) 60° (D) 180° As the speed of object moving through a fluid increases then the drag force experienced by it: (A) increases (B) decreases (C) remains constant (D) becomes zero in a Michelson interforometer by moving the mirror through a distance of $\lambda/4$, the path difference changes by: (A) $\frac{1}{4}$ (B) $\frac{1}{2}$ (C) λ (D) 2 λ The ratio of moment of inertia of disc and hoop is: (A) $\frac{1}{4}$ (B) $\frac{1}{2}$ (C) λ (D) 2 λ The louder the sound, the greater will be its: (A) wavelength (B) amplitude (C) speed (D) frequency if then the angle between them will be: (A) 30° (B) 60° (C) 90° (D) 120° (A) 30° (B) 60° (C) 90° (D) 120° (A) Candela (B) Ampere (C) Kelvin (D) Newton (A) and constant temperature, if pressure is halved then its volume is: (A) constant (B) halved (C) four times (D) doubled (C) change in entropy of reversible process is. (A) positive (B) magnetic force (C) gravitational force (D) frictional force (C) change in entropy of reversible process is. (A) positive (B) negative (C) zero (D) maximum (A) positive (B) negative (C) zero (D) maximum (A) positive (B) negative (C) zero (D) maximum (A) positive (B) negative (C) four times (D) doubled (C) pring constant (D) force (D) frictional force (D) frictional force (D) pring constant (D) for each of the earth is: (A) 95 N (B) 96 N (C) 97 N (D) 98 N (D) 98 N (D) 98 N (D) 97 N (D) 98 N (D) 98 N (D) 97 N (D) 97 N	elon (2019)	Objective		Marke 117
pick which you timk is correct; fill that circle in front of that question numbr with pick or pen. Cutting of filling two or more circles will result in zero mark in that pick or pen. (a) 7 (b) 9.6 (c) 3.5 (D) 11 (A) 7 (B) 9.6 (C) 3.5 (D) 12 (A) 30° (B) 45° (C) 60° (D) 180° (C) 60° (D) 180° (A) 30° (B) 45° (C) 60° (D) 180° (A) 36 sthe speed of object moving through a fluid increases then the drag force experienced by It: (A) increases (B) decreases (C) remains constant (D) becomes zero in a Michelson interforometer by moving the mirror through a distance of $\lambda/4$, the path difference changes by: (A) $\frac{\lambda}{4}$ (B) $\frac{\lambda}{2}$ (C) λ (D) 2 λ (D) 2 λ . The ratio of moment of inertia of disc and hoop is: (A) $\frac{\lambda}{4}$ (B) $\frac{\lambda}{2}$ (C) λ (D) 2 λ . The ratio of moment of inertia of disc and hoop is: (A) work and power (B) momentum and energy (C) work and torque (D) power and pressure in the sound, the greater will be its: (A) wavelength (B) amplitude (C) speed (D) frequency is fit the resultant of two vectors each of magnitude of 'F' is also of magnitude 'F' then the angle between them will be: (A) 30° (B) 50° (C) 90° (D) 120° (A) 30° (B) 60° (C) 90° (D) 120° (A) 30° (B) 60° (C) 90° (D) 120° (A) 30° (B) 60° (C) 90° (D) 120° (A) constant (B) halved (C) Kelvin (D) Newton (D) Newton (D) At constant temperature, if pressure is halved then its volume is: (A) constant (B) halved (C) four times (D) doubled (C) change in entropy of reversible process is. (A) positive (B) negative (C) zero (D) maximum (D) nature of material of spring (D) nature of material of spring (D) pring constant (D) nature of material of spring	Ata: You have four choice	s for each oble	the tune questle	n as A D C and D The
The magnifying power of convex lens of focal length 10cm is: (A) 7 (B) 9.6 (C) 3.5 (D) 11 If AB Sin Θ = AB Cos Θ the the angle between \overrightarrow{A} and \overrightarrow{B} is: (A) 30° (B) 45° (C) 60° (D) 180° As the speed of object moving through a fluid increases then the drag force experienced by it: (A) increases (B) decreases (C) remains constant (D) becomes zero in a Michelson interforometer by moving the mirror through a distance of $\lambda/4$, the path difference changes by: (A) $\frac{1}{4}$ (B) $\frac{1}{2}$ (C) λ (D) 2 λ The ratio of moment of inertia of disc and hoop is: (A) $\frac{1}{4}$ (B) $\frac{1}{2}$ (C) $\frac{3}{4}$ (D) $\frac{3}{2}$ The louder the sound, the greater will be its: (A) wavelength (B) amplitude (C) speed (D) frequency If the resultant of two vectors each of magnitude of 'F' is also of magnitude 'F' then the angle between them will be: (A) 30° (B) 60° (C) 90° (D) 120° (A) 30° (B) 60° (C) 90° (D) 120° (D) Newton 10. At constant temperature, if pressure is halved then its volume is: (A) constant (B) halved (C) four times (D) doubled 11. Is non-conservative force. (A) electric force (B) magnetic force (C) gravitational force (D) frictional force 12. Change in entropy of reversible process is. (A) positive (B) negative (C) zero (D) maximum 13. The total energy of mass-spring system is independent of. (A) mass of the body (B) amplitude (C) 57.3° (D) 47.3° 14. Pull of earth on a mass of 10 Kg on the surface of the earth is: (A) 95 N (B) 96 N (C) 97 N (D) 98 N 15. One radian is equal to: (A) 77.3° (B) 67.3° (C) 57.3° (D) 47.3° 16. Pascal is the unit of: (A) pressure (B) force (C) tension (D) weight 17. Distance between two adjacent crests and troughs is:	oice which you think is co	orrect; fill that cl	rela in front of th	ast quartion numbe with
The magnifying power of convex lens of focal length 10cm is: (A) 7 (B) 9.6 (C) 3.5 (D) 11 If AB Sin Θ = AB Cos Θ the the angle between \overrightarrow{A} and \overrightarrow{B} is: (A) 30° (B) 45° (C) 60° (D) 180° As the speed of object moving through a fluid increases then the drag force experienced by it: (A) increases (B) decreases (C) remains constant (D) becomes zero in a Michelson interforometer by moving the mirror through a distance of $\lambda/4$, the path difference changes by: (A) $\frac{\lambda}{4}$ (B) $\frac{\lambda}{2}$ (C) λ (D) 2 λ The ratio of moment of inertia of disc and hoop is: (A) $\frac{\lambda}{4}$ (B) $\frac{\lambda}{2}$ (C) λ (D) 2 λ The ratio of moment of inertia of disc and hoop is: (A) work and power (B) momentum and energy (C) work and torque (D) power and pressure in the louder the sound, the greater will be its: (A) wavelength (B) amplitude (C) speed (D) frequency in the nearly between them will be: (A) avelength (B) amplitude (C) speed (D) frequency in the nearly between them will be: (A) 30° (B) 60° (C) 90° (D) 120° (B) 60° (C) 90° (D) 120° (C) 60° (D) 120° (D) Newton (arker or pent cutting of t	illing two or mo	re circles will res	sult in zero mark in that
(A) 7 (B) 9.6 (C) 3.5 (D) 11 If AB Sin θ= AB Cosθ the the angle between \vec{A} and \vec{B} is: (A) 30° (B) 45° (C) 60° (D) 180° As the speed of object moving through a fluid increases then the drag force experienced by it: (A) increases (B) decreases (C) remains constant (D) becomes zero. In a Michelson interforometer by moving the mirror through a distance of λ/4, the path difference changes by: (A) $\frac{\lambda}{4}$ (B) $\frac{\lambda}{2}$ (C) λ (D) 2 λ The ratio of moment of inertia of disc and hoop is: (A) $\frac{\lambda}{4}$ (B) $\frac{1}{2}$ (C) $\frac{\lambda}{4}$ (D) $\frac{3}{2}$ The ratio of moment of inertia of disc and hoop is: (A) work and power (B) momentum and energy (C) work and torque (D) power and pressure. The louder the sound, the greater will be its: (A) wavelength (B) amplitude (C) speed (D) frequency. If the resultant of two vectors each of magnitude of 'F' is also of magnitude 'F'. The resultant of two vectors each of magnitude of 'F' is also of magnitude 'F'. The resultant of two vectors each of magnitude of 'F' is also of magnitude 'F'. The resultant of two vectors each of magnitude of 'F' is also of magnitude 'F'. The resultant of two vectors each of magnitude of 'F' is also of magnitude 'F'. The resultant of two vectors each of magnitude of 'F' is also of magnitude 'F'. The resultant of two vectors each of magnitude of 'F' is also of magnitude 'F'. The resultant of two vectors each of magnitude of 'F' is also of magnitude 'F'. The resultant of two vectors each of magnitude of 'F' is also of magnitude 'F'. The resultant of two vectors each of magnitude of 'F' is also of magnitude 'F'. The resultant of two vectors each of magnitude of 'F' is also of magnitude 'F'. The resultant of two vectors each of magnitude of 'F' is also of magnitude 'F'. The resultant of two vectors each of magnitude is: (A) 30° (B) Ampere (C) Kelvin (D) Newton (D)	lestion.			
(A) 7 (B) 9.6 (C) 3.5 (D) 11 If AB Sin θ= AB Cosθ the the angle between \vec{A} and \vec{B} is: (A) 30° (B) 45° (C) 60° (D) 180° As the speed of object moving through a fluid increases then the drag force experienced by it: (A) increases (B) decreases (C) remains constant (D) becomes zero. In a Michelson interforometer by moving the mirror through a distance of λ/4, the path difference changes by: (A) $\frac{\lambda}{4}$ (B) $\frac{\lambda}{2}$ (C) λ (D) 2 λ The ratio of moment of inertia of disc and hoop is: (A) $\frac{\lambda}{4}$ (B) $\frac{1}{2}$ (C) $\frac{\lambda}{4}$ (D) $\frac{3}{2}$ The ratio of moment of inertia of disc and hoop is: (A) work and power (B) momentum and energy (C) work and torque (D) power and pressure. The louder the sound, the greater will be its: (A) wavelength (B) amplitude (C) speed (D) frequency. If the resultant of two vectors each of magnitude of 'F' is also of magnitude 'F'. The resultant of two vectors each of magnitude of 'F' is also of magnitude 'F'. The resultant of two vectors each of magnitude of 'F' is also of magnitude 'F'. The resultant of two vectors each of magnitude of 'F' is also of magnitude 'F'. The resultant of two vectors each of magnitude of 'F' is also of magnitude 'F'. The resultant of two vectors each of magnitude of 'F' is also of magnitude 'F'. The resultant of two vectors each of magnitude of 'F' is also of magnitude 'F'. The resultant of two vectors each of magnitude of 'F' is also of magnitude 'F'. The resultant of two vectors each of magnitude of 'F' is also of magnitude 'F'. The resultant of two vectors each of magnitude of 'F' is also of magnitude 'F'. The resultant of two vectors each of magnitude of 'F' is also of magnitude 'F'. The resultant of two vectors each of magnitude of 'F' is also of magnitude 'F'. The resultant of two vectors each of magnitude is: (A) 30° (B) Ampere (C) Kelvin (D) Newton (D)	The magnifying power o	f convex lens of f	ocal length 10cm	is:
If AB Sin θ = AB Cos θ the the angle between \vec{A} and \vec{B} is: (A) 30° (B) 45° (C) 60° (D) 180° As the speed of object moving through a fluid increases then the drag force experienced by lt: (A) increases (B) decreases (C) remains constant (D) becomes zero in a Michelson interforometer by moving the mirror through a distance of $\lambda/4$, the path difference changes by: (A) $\frac{\lambda}{4}$ (B) $\frac{\lambda}{2}$ (C) λ (D) 2 λ The ratio of moment of inertia of disc and hoop is: (A) $\frac{\lambda}{4}$ (B) $\frac{1}{2}$ (C) $\frac{\lambda}{4}$ (D) $\frac{3}{2}$ That has the same dimensions. (A) work and power (B) momentum and energy (C) work and torque (D) power and pressure in the condition of two vectors each of magnitude of 'F' is also of magnitude 'F' then the angle between them will be: (A) 30° (B) 60° (C) 90° (D) 120° (B) 410° (C) 50° (D) 120° (D) Newton (D) Newton (D) Newton (D) Newton (D) At constant (E) Ampere (C) Kelvin (D) Newton (D) At constant (E) halved (C) four times (D) doubled (C) four times (D) doubled (C) force (E) magnetic force (C) gravitational force (D) frictional force (C) C) positive (E) negative (C) zero (D) maximum (E) (A) mass of the body (B) amplitude (C) spring constant (D) 98 N (D) 97 N (D) 98 N (D) 98 N (D) 97 N (D) 98 N (D) 98 N (D) 97 N (D) 98 N (D) 98 N (D) 97 N (D) 98 N (D) 98 N (D) 97 N (D) 98 N (D) 98 N (D) 97 N (D) 9	(A) 7 (B)	9.6	C) 3.5	(D) 11
(A) 30° (B) 45° (C) 60° (D) 180° As the speed of object moving through a fluid increases then the drag force experienced by it: (A) increases (B) decreases (C) remains constant (D) becomes zero in a Michelson interforometer by moving the mirror through a distance of λ/4, the path difference changes by: (A) $\frac{\lambda}{4}$ (B) $\frac{\lambda}{2}$ (C) λ (D) 2 λ The ratio of moment of inertia of disc and hoop is: (A) $\frac{1}{4}$ (B) $\frac{1}{2}$ (C) $\frac{\lambda}{4}$ (D) $\frac{3}{2}$ The louder the same dimensions. (A) work and power (B) momentum and energy (C) work and torque (D) power and pressure in the interval of two vectors each of magnitude of 'F' is also of magnitude 'F' then the angle between them will be: (A) 30° (B) 60° (C) 90° (D) 120° (A) 13 derived unit: (A) Candela (B) Ampere (C) Kelvin (D) Newton is: (A) constant (B) halved (C) four times (D) doubled is: (A) constant (B) halved (C) four times (D) doubled is: (A) positive (B) magnetic force (C) gravitational force (D) frictional force in the total energy of mass-spring system is independent of. (A) mass of the body (B) amplitude (C) amplitude (C) spring constant (D) nature of material of spring in the total energy of mass-spring system is independent of. (A) mass of the body (B) amplitude (C) amplitude (C) spring constant (D) nature of material of spring in the constant sequal to: (A) 77.3° (B) 67.3° (C) 57.3° (D) 47.3° 16. Pascal is the unit of: (A) pressure (B) force (C) tension (D) weight in the pressure is and troughs is:	If AB Sin 0= AB Cos0 the	the angle between	en \vec{A} and \vec{B} is	
As the speed of object moving through a fluid increases then the drag force experienced by it: (A) increases (B) decreases (C) remains constant (D) becomes zero in a Michelson interforometer by moving the mirror through a distance of λ/4, the path difference changes by: (A) \(\frac{1}{4} \) (B) \(\frac{1}{2} \) (C) \(\lambda \) (D) 2 \(\lambda \) The ratio of moment of inertia of disc and hoop is: (A) \(\frac{1}{4} \) (B) \(\frac{1}{2} \) (C) \(\frac{3}{4} \) (D) \(\frac{3}{2} \) (A) work and power (B) momentum and energy (C) work and torque (D) power and pressure in the louder the sound, the greater will be its: (A) wavelength (B) amplitude (C) speed (D) frequency is if the resultant of two vectors each of magnitude of 'F' is also of magnitude 'F' then the angle between them will be: (A) 30° (B) 60° (C) 90° (D) 120° (B) 60° (C) 90° (D) 120° (C) 41 (D) Newton (D) Newton (D) Newton (D) Newton (D) At constant temperature, if pressure is halved then its volume is: (A) constant (B) halved (C) four times (D) doubled (D) doubled (D) is non-conservative force. (A) electric force (B) magnetic force (C) gravitational force (D) frictional force (D) positive (B) negative (C) zero (D) maximum (D) maximu	(A) 30° (B) 45°	6	C) 60°	(D) 180°
experienced by it: (A) Increases (B) decreases (C) remains constant (D) becomes zero in a Michelson interforometer by moving the mirror through a distance of \(\lambda/4\), the path difference changes by: (A) \(\frac{1}{4}\) (B) \(\frac{1}{2}\) (C) \(\lambda\) (D) 2 \(\lambda\) The ratio of moment of inertia of disc and hoop is: (A) \(\frac{1}{4}\) (B) \(\frac{1}{2}\) (C) \(\frac{3}{4}\) (D) \(\frac{3}{2}\) The same dimensions. (A) work and power (B) momentum and energy (C) work and torque (D) power and pressure in the louder the sound, the greater will be its: (A) wavelength (B) amplitude (C) speed (D) frequency if the resultant of two vectors each of magnitude of 'F' is also of magnitude 'F' then the angle between them will be: (A) 30° (B) 60° (C) 90° (D) 120° (B) 60° (C) 90° (D) 120° (C) 410° (A) Candela (B) Ampere (C) Kelvin (D) Newton is derived unit: (A) Candela (B) Ampere (C) Kelvin (D) Newton is derived unit: (A) constant (B) halved (C) four times (D) doubled is: (A) constant (B) halved (C) four times (D) doubled is: (A) electric force (B) magnetic force (C) gravitational force (D) frictional force is: (A) positive (B) negative (C) zero (D) maximum independent of. (A) mass of the body (B) amplitude (D) nature of material of spring independent of the earth is: (A) 5 N (B) 96 N (C) 97 N (D) 98 N 15. One radian is equal to: (A) 77.3° (B) 67.3° (C) 57.3° (D) 47.3° 16. Pascal is the unit of: (A) pressure (B) force (C) tension (D) weight 17. Distance between two adjacent crests and troughs is:	As the speed of object n	noving through a	fluid increases ti	nen the drag force
In a Michelson interforometer by moving the mirror through a distance of $\lambda/4$, the path difference changes by: (A) $\frac{\lambda}{4}$ (B) $\frac{\lambda}{2}$ (C) λ (D) 2λ The ratio of moment of inertia of disc and hoop is: (A) $\frac{1}{4}$ (B) $\frac{1}{2}$ (C) $\frac{3}{4}$ (D) $\frac{3}{2}$ has the same dimensions. (A) work and power (B) momentum and energy (C) work and torque (D) power and pressure if the louder the sound, the greater will be its: (A) wavelength (B) amplitude (C) speed (D) frequency. If the resultant of two vectors each of magnitude of 'F' is also of magnitude 'F' then the angle between them will be: (A) 30° (B) 60° (C) 90° (D) 120° (A) is derived unit: (A) Candela (B) Ampere (C) Kelvin (D) Newton is: (A) constant temperature, if pressure is halved then its volume is: (A) constant (B) halved (C) four times (D) doubled is non-conservative force. (A) electric force (B) magnetic force (C) gravitational force (D) frictional force is non-conservative force. (A) positive (B) negative (C) zero (D) maximum is independent of. (A) mass of the body (B) amplitude (C) spring constant (D) and the surface of the earth is: (A) 95 N (B) 96 N (C) 97 N (D) 98 N 15. One radian is equal to: (A) 77.3° (B) 67.3° (C) 57.3° (D) 47.3° 16. Pascal is the unit of: (A) pressure (B) force (C) tension (D) weight 17. Distance between two adjacent crests and troughs is:	experienced by it:		· Learn Page	
In a Michelson interforometer by moving the mirror through a distance of $\lambda/4$, the path difference changes by: (A) $\frac{\lambda}{4}$ (B) $\frac{\lambda}{2}$ (C) λ (D) 2 λ The ratio of moment of inertia of disc and hoop is: (A) $\frac{1}{4}$ (B) $\frac{1}{2}$ (C) $\frac{3}{4}$ (D) $\frac{3}{2}$ has the same dimensions. (A) work and power (B) momentum and energy (C) work and torque (D) power and pressure. The louder the sound, the greater will be its: (A) wavelength (B) amplitude (C) speed (D) frequency. If the resultant of two vectors each of magnitude of 'F' is also of magnitude 'F' then the angle between them will be: (A) 30° (B) 60° (C) 90° (D) 120° (B) 60° (C) 90° (D) 120° (C) 60° (D) 120° (A) Candela (B) Ampere (C) Kelvin (D) Newton (D) Newton (D) At constant temperature, if pressure is halved then its volume is: (A) constant (B) halved (C) four times (D) doubled (C) four times (D) doubled (C) four times (D) maximum (D) Newton (D) Ne	(A) Increases (B) de	ecréases	(C) remains const	ant (D) becomes zero
path difference changes by: (A) $\frac{1}{4}$ (B) $\frac{1}{2}$ (C) λ (D) 2 λ The ratio of moment of inertia of disc and hoop is: (A) $\frac{1}{4}$ (B) $\frac{1}{2}$ (C) $\frac{3}{4}$ (D) $\frac{3}{2}$ has the same dimensions. (A) work and power (B) momentum and energy (C) work and torque (D) power and pressure. The louder the sound, the greater will be its: (A) wavelength (B) amplitude (C) speed (D) frequency. If the resultant of two vectors each of magnitude of 'F' is also of magnitude 'F' then the angle between them will be: (A) 30° (B) 60° (C) 90° (D) 120° (B) 60° (C) 90° (D) 120° (A) Candela (B) Ampere (C) Kelvin (D) Newton (D) Newton (D) At constant temperature, if pressure is halved then its volume is: (A) constant (B) halved (C) four times (D) doubled (C) four times (D) doubled (D) and the constant temperature force (C) gravitational force (D) frictional force (C) change in entropy of reversible process is. (A) positive (B) negative (C) zero (D) maximum (D) and the constant (D) nature of material of spring (C) spring constant (D) nature of material of spring (D) and the constant (D) nature of material of spring (D) 95 N (D) 98 S (C) 57.3° (D) 47.3° (B) 67.3° (C) 57.3° (D) 47.3° (D)	In a Michelson interfore	ometer by movin	g the mirror thro	ugh a distance of $\lambda/4$, the
The ratio of moment of inertia of disc and hoop is: (A) $\frac{1}{4}$ (B) $\frac{1}{2}$ (C) $\frac{3}{4}$ (D) $\frac{3}{2}$ has the same dimensions. (A) work and power (B) momentum and energy (C) work and torque (D) power and pressure. The louder the sound, the greater will be its: (A) wavelength (B) amplitude (C) speed (D) frequency. If the resultant of two vectors each of magnitude of 'F' is also of magnitude 'F' then the angle between them will be: (A) 30° (B) 60° (C) 90° (D) 120° (A) Candela (B) Ampere (C) Kelvin (D) Newton (A) Candela (B) Ampere (C) Kelvin (D) Newton (A) Constant temperature, if pressure is halved then its volume is: (A) constant (B) halved (C) four times (D) doubled (A) electric force (B) magnetic force (C) gravitational force (D) frictional force (C) positive (B) negative (C) zero (D) maximum (C) positive (B) negative (C) zero (D) maximum (D) nature of material of spring (D) nature of material of	path difference change	s by:		
The ratio of moment of inertia of disc and hoop is: (A) $\frac{1}{4}$ (B) $\frac{1}{2}$ (C) $\frac{3}{4}$ (D) $\frac{3}{2}$ has the same dimensions. (A) work and power (B) momentum and energy (C) work and torque (D) power and pressure. The louder the sound, the greater will be its: (A) wavelength (B) amplitude (C) speed (D) frequency. If the resultant of two vectors each of magnitude of 'F' is also of magnitude 'F' then the angle between them will be: (A) 30° (B) 60° (C) 90° (D) 120° (A) Candela (B) Ampere (C) Kelvin (D) Newton (A) Candela (B) Ampere (C) Kelvin (D) Newton (A) Constant temperature, if pressure is halved then its volume is: (A) constant (B) halved (C) four times (D) doubled (A) electric force (B) magnetic force (C) gravitational force (D) frictional force (C) positive (B) negative (C) zero (D) maximum (C) positive (B) negative (C) zero (D) maximum (D) nature of material of spring (D) nature of material of	$(A) \stackrel{\lambda}{=} \qquad (B) \stackrel{\lambda}{=}$		(c) x	(5) 2 3
(A) $\frac{1}{4}$ (B) $\frac{1}{2}$ (C) $\frac{3}{4}$ (D) $\frac{3}{2}$ has the same dimensions. (A) work and power (B) momentum and energy (C) work and torque (D) power and pressure The louder the sound, the greater will be lts: (A) wavelength (B) amplitude (C) speed (D) frequency If the resultant of two vectors each of magnitude of 'F' is also of magnitude 'F' then the angle between them will be: (A) 30° (B) 60° (C) 90° (D) 120° Is derived unit: (A) Candela (B) Ampere (C) Kelvin (D) Newton 10. At constant temperature, if pressure is halved then its volume is: (A) constant (B) halved (C) four times (D) doubled 11	7 2	**		(0) 2/
has the same dimensions. (A) work and power (B) momentum and energy (C) work and torque (D) power and pressure (A) wavelength (B) amplitude (C) speed (D) frequency (B) If the resultant of two vectors each of magnitude of 'F' is also of magnitude 'F' then the angle between them will be: (A) 30° (B) 60° (C) 90° (D) 120° (A) Candela (B) Ampere (C) Kelvin (D) Newton (A) Candela (B) Ampere (C) Kelvin (D) Newton (A) constant temperature, if pressure is halved then its volume is: (A) constant (B) halved (C) four times (D) doubled (A) electric force (B) magnetic force (C) gravitational force (D) frictional force (A) electric force (B) magnetic force (C) gravitational force (D) maximum (A) positive (B) negative (C) zero (D) maximum (A) mass of the body (B) amplitude (C) spring constant (D) nature of material of spring (A) Pull of earth on a mass of 10 Kg on the surface of the earth is: (A) 95 N (B) 96 N (C) 97 N (D) 98 N (C) 97 N (D) 98 N (D) 47.3° (E) Pascal Is the unit of: (A) pressure (B) force (C) tension (D) weight (C) Distance between two adjacent crests and troughs is:				10.3
(A) work and power (B) momentum and energy (C) work and torque (D) power and pressure (A) wavelength (B) amplitude (C) speed (D) frequency (B) IF the resultant of two vectors each of magnitude of 'F' is also of magnitude 'F' then the angle between them will be: (A) 30° (B) 60° (C) 90° (D) 120° (B) 40° (B) 60° (C) 80° (D) 120° (C) 80° (D) 120° (E) 60° (C) 80° (D) 120° (E) 60° (E)	T		(C) = 4	$(D)\frac{\pi}{2}$
The louder the sound, the greater will be its: (A) wavelength (B) amplitude (C) speed (D) frequency If the resultant of two vectors each of magnitude of 'F' is also of magnitude 'F' then the angle between them will be: (A) 30° (B) 60° (C) 90° (D) 120° (A) Candela (B) Ampere (C) Kelvin (D) Newton (A) Candela (B) Ampere (C) Kelvin (D) Newton (A) Candela (B) Ampere (C) four times (D) doubled (A) Constant (B) halved (C) four times (D) doubled (A) constant (B) halved (C) gravitational force (D) frictional force (A) electric force (B) magnetic force (C) gravitational force (D) frictional force (A) positive (B) negative (C) zero (D) maximum (A) positive (B) negative (C) zero (D) maximum (A) mass of the body (B) amplitude (C) spring constant (D) nature of material of spring (A) 95 N (B) 96 N (C) 97 N (D) 98 N (A) 77.3° (B) 67.3° (C) 57.3° (D) 47.3° (A) pressure (B) force (C) tension (D) weight (C) Distance between two adjacent crests and troughs is:				
(A) wavelength (B) amplitude (C) speed (D) frequency (If the resultant of two vectors each of magnitude of 'F' is also of magnitude 'F' then the angle between them will be: (A) 30° (B) 60° (C) 90° (D) 120° (A) Candela (B) Ampere (C) Kelvin (D) Newton (A) Candela (B) Ampere (C) Kelvin (D) Newton (A) Constant temperature, if pressure is halved then its volume is: (A) constant (B) halved (C) four times (D) doubled (A) constant (B) magnetic force (C) gravitational force (D) frictional force (A) electric force (B) magnetic force (C) gravitational force (D) frictional force (C) cero (D) maximum (D) maximum (D) maximum (E) amplitude (C) spring constant (D) nature of material of spring (C) spring constant (D) nature of material of spring (C) 95 N (B) 96 N (C) 97 N (D) 98 N (E) 95 N (B) 96 N (C) 57.3° (D) 47.3° (E) Pascal is the unit of: (A) pressure (B) force (C) tension (D) weight (T) Distance between two adjacent crests and troughs is:				que (D) power and pressure
If the resultant of two vectors each of magnitude of 'F' is also of magnitude 'F' then the angle between them will be: (A) 30° (B) 60° (C) 90° (D) 120° Is derived unit: (A) Candela (B) Ampere (C) Kelvin (D) Newton 10. At constant temperature, if pressure is halved then its volume is: (A) constant (B) halved (C) four times (D) doubled 11. Is non-conservative force. (A) electric force (B) magnetic force (C) gravitational force (D) frictional force 12. Change in entropy of reversible process is. (A) positive (B) negative (C) zero (D) maximum 13. The total energy of mass-spring system is independent of. (A) mass of the body (B) amplitude (C) spring constant (D) nature of material of spring 14. Pull of earth on a mass of 10 Kg on the surface of the earth is: (A) 95 N (B) 96 N (C) 97 N (D) 98 N 15. One radian is equal to: (A) 77.3° (B) 67.3° (C) 57.3° (D) 47.3° 16. Pascal is the unit of: (A) pressure (B) force (C) tension (D) weight 17. Distance between two adjacent crests and troughs is:				
then the angle between them will be: (A) 30° (B) 60° (C) 90° (D) 120° (D) 120° (E) 40° (E) 40° (E) 50° (E) 60° (E) 60				(/1
(A) 30° (B) 60° (C) 90° (D) 120° (A) Candela (B) Ampere (C) Kelvin (D) Newton 10. At constant temperature, if pressure is halved then its volume is: (A) constant (B) halved (C) four times (D) doubled 11.	I. If the resultant of two	vectors each of	magnitude of 'F'	is also of magnitude 'F'
Is derived unit: (A) Candela (B) Ampere (C) Kelvin (D) Newton 10. At constant temperature, if pressure is halved then its volume is: (A) constant (B) halved (C) four times (D) doubled 11		en them will be:		255
(A) Candela (B) Ampere (C) Kelvin (D) Newton 10. At constant temperature, if pressure is halved then its volume is: (A) constant (B) halved (C) four times (D) doubled 11		606	(C) 90°	(D) 120°
(A) constant temperature, if pressure is halved then its volume is: (A) constant (B) halved (C) four times (D) doubled (I)	s is derived u	nit:		
10. At constant temperature, if pressure is halved then its volume is: (A) constant (B) halved (C) four times (D) doubled 11	(A) Candela (B)	Ampere		
(A) constant (B) halved (C) four times (D) doubled (I) is non-conservative force. (A) electric force (B) magnetic force (C) gravitational force (D) frictional force (I) positive (E) negative (I) zero (I) maximum (I) mass of the body (I) spring constant (I) nature of material of spring (I) nature of the earth is: (I) 95 N (I) 96 N (I) 97 N (I) 98 N (I) 98 N (I) 97 N (I) 98 N (I) 98 N (I) 97 N (I) 98 N (II) 98	10. At constant temperat	ure, if pressure i	s halved then its	volume is:
11 is non-conservative force. (A) electric force (B) magnetic force (C) gravitational force (D) frictional force 12. Change in entropy of reversible process is. (A) positive (B) negative (C) zero (D) maximum 13. The total energy of mass-spring system is independent of. (A) mass of the body (B) amplitude (C) spring constant (D) nature of material of spring 14. Pull of earth on a mass of 10 Kg on the surface of the earth is: (A) 95 N (B) 96 N (C) 97 N (D) 98 N 15. One radian is equal to: (A) 77.3° (B) 67.3° (C) 57.3° (D) 47.3° 16. Pascal is the unit of: (A) pressure (B) force (C) tension (D) weight 17. Distance between two adjacent crests and troughs is:	(A) constant (B)	halved	(C) four times	(D) doubled
(A) electric force (B) magnetic force (C) gravitational force (D) frictional force 12. Change in entropy of reversible process is. (A) positive (B) negative (C) zero (D) maximum. 13. The total energy of mass-spring system is independent of. (A) mass of the body (B) amplitude (C) spring constant (D) nature of material of spring 14. Pull of earth on a mass of 10 Kg on the surface of the earth is: (A) 95 N (B) 96 N (C) 97 N (D) 98 N 15. One radian is equal to: (A) 77.3° (B) 67.3° (C) 57.3° (D) 47.3° 16. Pascal is the unit of: (A) pressure (B) force (C) tension (D) weight 17. Distance between two adjacent crests and troughs is:	11. is non-conser	vative force.		
12. Change in entropy of reversible process is. (A) positive (B) negative (C) zero (D) maximum 13. The total energy of mass-spring system is independent of. (A) mass of the body (B) amplitude (C) spring constant (D) nature of material of spring 14. Pull of earth on a mass of 10 Kg on the surface of the earth is: (A) 95 N (B) 96 N (C) 97 N (D) 98 N 15. One radian is equal to: (A) 77.3° (B) 67.3° (C) 57.3° (D) 47.3° 16. Pascal is the unit of: (A) pressure (B) force (C) tension (D) weight 17. Distance between two adjacent crests and troughs is:	(A) electric force (B)	magnetic force	(C) gravitation	al force (D) frictional force
(A) positive (B) negative (C) zero (D) maximum 13. The total energy of mass-spring system is independent of. (A) mass of the body (B) amplitude (C) spring constant (D) nature of material of spring 14. Pull of earth on a mass of 10 Kg on the surface of the earth is: (A) 95 N (B) 96 N (C) 97 N (D) 98 N 15. One radian is equal to: (A) 77.3° (B) 67.3° (C) 57.3° (D) 47.3° 16. Pascal is the unit of: (A) pressure (B) force (C) tension (D) weight 17. Distance between two adjacent crests and troughs is:	12. Change in entropy of	reversible proce	ess is.	
13. The total energy of mass-spring system is independent of. (A) mass of the body (B) amplitude (C) spring constant (D) nature of material of spring 14. Pull of earth on a mass of 10 Kg on the surface of the earth is: (A) 95 N (B) 96 N (C) 97 N (D) 98 N 15. One radian is equal to: (A) 77.3° (B) 67.3° (C) 57.3° (D) 47.3° 16. Pascal is the unit of: (A) pressure (B) force (C) tension (D) weight 17. Distance between two adjacent crests and troughs is:	(A) positive (B)	negative	(C) zero	(D) maximum .
(A) mass of the body (C) spring constant (D) nature of material of spring 14. Pull of earth on a mass of 10 Kg on the surface of the earth is: (A) 95 N (B) 96 N (C) 97 N (D) 98 N 15. One radian is equal to: (A) 77.3° (B) 67.3° (C) 57.3° (D) 47.3° 16. Pascal is the unit of: (A) pressure (B) force (C) tension (D) weight 17. Distance between two adjacent crests and troughs is:	13. The total energy of n			t of.
(C) spring constant (D) nature of material of spring 14. Pull of earth on a mass of 10 Kg on the surface of the earth is: (A) 95 N (B) 96 N (C) 97 N (D) 98 N 15. One radian is equal to: (A) 77.3° (B) 67.3° (C) 57.3° (D) 47.3° 16. Pascal Is the unit of: (A) pressure (B) force (C) tension (D) weight 17. Distance between two adjacent crests and troughs is:	The state of the s		(B) amplitude	
14. Pull of earth on a mass of 10 Kg on the surface of the earth is: (A) 95 N (B) 96 N (C) 97 N (D) 98 N 15. One radian is equal to: (A) 77.3° (B) 67.3° (C) 57.3° (D) 47.3° 16. Pascal is the unit of: (A) pressure (B) force (C) tension (D) weight 17. Distance between two adjacent crests and troughs is:	1-1			
(A) 95 N (B) 96 N (C) 97 N (D) 98 N 15. One radian is equal to: (A) 77.3° (B) 67.3° (C) 57.3° (D) 47.3° 16. Pascal is the unit of: (A) pressure (B) force (C) tension (D) weight 17. Distance between two adjacent crests and troughs is:	14. Pull of name and and	see of 10 Kg on t		
15. One radian is equal to: (A) 77.3° (B) 67.3° (C) 57.3° (D) 47.3° 16. Pascal is the unit of: (A) pressure (B) force (C) tension (D) weight 17. Distance between two adjacent crests and troughs is:			(c) 97 N	(D) 98 N
(A) 77.3° (B) 67.3° (C) 57.3° (D) 47.3° 16. Pascal Is the unit of: (A) pressure (B) force (C) tension (D) weight 17. Distance between two adjacent crests and troughs is:			(0, 5, 1,	
16. Pascal Is the unit of: (A) pressure (B) force (C) tension (D) weight 17. Distance between two adjacent crests and troughs is:			(6) 57 20	(6) 47.30
(A) pressure (B) force (C) tension (D) weight 17. Distance between two adjacent crests and troughs is:		3) 67.3	(6) 37.3	(6) 4/13
17. Distance between two adjacent crests and troughs is:			(A) tenden	(6) walah
	(A) pressure (B) force		
			sts and troughs is	51
			(C) 🚣	(D) 2 X

Marks: 68

Time: 2:40 Hours

<u>GUJRANWALA BOARD</u>

(Group -I, Class 11th) Subjective SECTION -

Physics (New Scheme) Session (2019)

Write short answers to any EIGHT parts.

How many nanoseconds are thre in one year? Give the drawbacks to use the period of a pendulum as a time standard. II.

230

State right hand rule for the cross product of two vectors. III.

If $A = \hat{i} - 2\hat{j} + 3\hat{k}$ and $\vec{B} = 2\hat{i} - \hat{j} + \hat{k}$ then find $A \cdot \vec{B}$ lv. Can a body rotate about its centre of gravity under the action of its weight?

What is the blomass? Write the names of two methods to obtain energy from blomass, vI.

vii. What is Aquifer?

State Bernoulli's relation for a liquid in motion and describe some of its applications. viii.

A person is standing near a fast moving train. Is there any danger that he will fall towards it? ix.

Define freee oscillations and forced oscillations. x.

xi. Can we realize an Ideal simple pendulum? Explain briefly. xli.

Does frequency depends on amplitude for harmonic oscillators?

3. Write short answer to any EIGHT parts.

i. An object is thrown vertifically upward. Discuss the sign of acceleration due to gravity,

relative to velocity, while the object is in air. II.,

Motion with constant velocity is a special case of motion with constant acceleration. Is this statement true? Discuss. ill,

Which quantity remains same at all points on the trajectory of projectile; either velocity or acceleration? Explain.

iv. Define impulse. Does a moving object having uniform velocity has impulse?

Explain how many minimum number of geo-stationary satellites are required for global ٧. coverage of T.V. transmission.

Why does a diver change his body positions before and after diving in the pool? vi.

vil. A disc without slipping rolls down a hill of height 10.0m. If the disc starts from rest at the top of hill, what is its speed at the bottom?

Define angular acceleration. Write its unit. viil.

Why does sound travel faster in solids than in gases? ix.

As a result of a distant explosion, an observer senses a ground tremor and then hears the X, explosion. Explain the time difference.

What do you mean by harmonic series? хi.

xII. What is the effect of density on speed of sound in a gas? Write short answer to any SIX parts.

4.

Explain whether the Young's experiment is an experiment for studying interferences or 1.

What is the function of collimator in a spectrometer? II.

Why central spot of Newton's ring is dark? III.

Could you obtain Newton's ring with transmitted light? If yes, would the pattern be iv. different from that obtained with reflected light? v.

How the light signal is transmitted through the optical fibre? vi.

Give an example of natural process that involves an increase in entropy. vII.

A thermo flask containing milk as a system is shaken rapidly. Does the temperature of milk rise? Is it possible to convert internal energy into mcchanical energy? Explain with an example, viii.

Define triple point, what is triple point of water?

SECTION - II Attempt any THREE questions. Each question carries 08 Marks. 5.(a) Differentiate between precision and accuracy with example.

(b) Find the average speed of Nitrogen molecules in air under standard conditions of pressure

6.(a) What are rectangular components, explain. How a vector is obtained from its rectangular

(b) A truck weighing 2500 Kg and moving with velocity of 21ms⁻¹ collides with a stationary car weighing 1000 Kg. The truck and the car move together after the impact. Calculate their

7. (a) Define standing waves. Find the relations for frequencies of these waves in different air

(b) A force (Thrust) of 400 N is required to overscome road friction and air resistance propelling an automobile at 80 Kmh⁻¹. What power must the engine develop?

8. (a) Derive the relation for Artificial Gravity.

(a) Derive the relation for Arthreigh Charles (b) What should be the length of a simple Pendulum whose period is 1.0 second at a place where

9. (a) What is a bandwidth? Discuss the fibre optic principles?

(a) What is a bandwidth roiscuss the hore option which has 2500 lines per centimeter. Computer the wavelength of a spectral line for which the deviation in a second order is 15.0°?

RA	W	A	LP	IN	D	В	Ò	A	RD
De	VV	M	L۲	ш	ט	D	U	MI	۱u

physics (New Scheme) Session (2019)	(Group - I-Clas	s 11 th)	Time : 20 Mir Marks	nutes s : 17
Session (2020) Note: You have four choic	Objectives for each abla		action as A	B. C and D. The
Note: You have four choice which you think is c	es for each obje	ctive type qu	of that quest	lon numbr with
choice Which you think is c	orrect; fill that o	ircle in front	Or that quest	ro mark in that
marker or pen. Cutting of	tilling two or m	ore circles wi	ii result iii 2e	10 mark in some
question.			F	
1. Soap film shows colours	s due to:		(0) 0	(lasting
(A) Interference (B)	Diffractin	(C) Polarization		flection
2. Magnifying power of th	e lens is 6 then i	ts focal length	will be:	
(A) 4 (B) 6		(C) 5	(D) 4.	,
3. The SI unit of product of				
(A) Watt (B) Jo		(C) Pascal	(D) N	.m
4. Carnot engine cycle cor	nsists of:			
(A) Four steps (B) T		(C) Single step	(D) T	wo steps
5. Mass is highly concent	rated form of:			
	nergy	(C) Plasma	(D) Cl	narge -
<u></u>	ame as:			
(A) Angular frequency (B)	Force	(C) Torque	(D) T	ime period
7. Force of 10N makes an				A CONTRACTOR OF THE PARTY OF TH
		(C) $\frac{10}{\sqrt{2}}$ N	(D) 1	10√2 N
(A) 5N (B) 8		V	(0)	2.0
8. In which quadrant vec	tor $-2\hat{i}-3\hat{j}$ lies.			e e
(A) 1st (B)	2 nd	(C) 4 th	(D) 3	
9. Distance travelled by	free falling object	t in first secon	d is:	
(A) 4.9m (B)	9.8m	(C) 19.6m	(D)	10m
10. Choice of zero potent	ial energy level is	1	8	
(A) Surface of the Eart	th .	(B) at infinity	~37	
(C) Just above the sur	face of Earth	(D) arbitary	40	
11. 2º is equal to:			in the same of the	
(A) 0.035 rad (B)	0.30 rad	(C) 0.35 rad	(D)	0.0035 rad
12. Centripetal force is d	irected along.	×9		
1.1	(R) radius	(C) axis of ro		(-axis
(A) Tangent to circle 13.Terminal velocity of a	particle in the fl	uid depends o	n:	
(A) Nature of fluid		1000000000		
(C) Force of particle		(D) Angular	velocity of par	ticle
14. Radar system is an a	application of:	8		
(A) Electric effect (B)	Dobbier 2 circos	(C) Magneti	c effect (D)	Chemical effect
15. $\int_{\overline{a}}^{\overline{l}}$ and $\int_{\overline{k}}^{\overline{m}}$ has so	ime.	•		
	/m \ 1 m dec	(C) Dampin	g (D)	Time period
(A) Numerical value 16. On loading the prong	of tuning fork wi	th wax, the fre	quency of sour	id:
16. On loading the profit		(B) Decrease	S	
(A) Increases		(D) Periodic	increases and d	ecreases
(C) Remains same 17. Fringe spacing incre	ases If we use:	tion of		hlua liaba
(A) Lowest order (B	3) highest order	(C) red light	(D)	blue light

Physics (New Scheme) Session (2019)

RAWALPINDI BOARD (Inter Part-I, Class 11th) Subjective

Time: 2:40 Hours Marks : 68

SECTION -2. Write short answers to any EIGHT parts.

Find unit of vectors in the direction of vector \vec{A} , $\vec{A} = 8\hat{i} + 4\hat{j}$. I.

ii. What do you mean by scientific notations? Give one example. Time period of a simple pendulum is measured by stop watch. What type of errors are III. possible in the time period?

lv. Differentiate between base units and derived units with examples.

٧. Calculate the number of seconds in one year.

Write briefly about Ballistic Missile. VI. vii. Define viscosity and give Its units.

viii. Explain the circumstance in which \vec{V} and \vec{a} are: (i) in parallel. (ii) are prependicular,

ix. Vector A lies in xy plane. For what orientations will both of its rectangular components be negative and for what orientations, its rectangular components be positive.

Describe Newton's second law of motion in terms of momentum

χİ. Explain briefly how the swing is produced in a fast moving cricket ball with figure.

xii. Define positive and negative acceleration along with their directions.

Write short answer to any EIGHT parts. 3,

i. Calculate the work done in Killo jouls in lifting a mass of 10kg, through vertical height of

ii. A boy uses a catapault to throw a stone which accidently smashes a green house window, Discuss the possible energy changes. Convert 1.4kw into joule/sec.

III.

iv.-Prove that 1 rad=57.3°.

Show that for a body attached with a spring $ilde{d}$ ٧.

Can we realize an ideal simple pendulum?

vii. Why does sound travel faster in sollds than in gasses?

What are the uses of beats? viii.

ix. What is meant by moment of inertia? Explain its role in angular motion. How artificial gravity is produced in a satellite orbiting around the Earth. What happens to the period of a simple pendulum if its length is doubled? χi.

Differentiate beteen mechanical waves and electromagnetic waves. XII.

4. Write short answer to any SIX parts.

Under what conditions two or more sources of light behave as coherent sources? How would you manage to get more orders of spectra using a diffraction grating? · III. Can visible light produce interference fringes? Explain.

How the light signal is transmitted through the optical fibre? iv

Why would it be advantageous to use blue light with a compound microscope?

Specific heat of a gas at constant pressure is greater than specific heat at constant volume. vI.

is it possible to construct a heat engine that will not expel heat into the atmosphere? vii. Can the mechanical energy be converted completely into heat energy? If so give an viii.

Define isothermal process and adiabatic process. ix.

SECTION - II

Attempt any THREE questions. Each question carries 08 Marks.

5.(a) How can a vector be resolved into its rectangular components? How a vector is determined If its rectangular components are given?

(b) A ball is thrown with a speed of 30mS⁻¹ in a directin 60° with horizontal. Calculate the range of the ball.

6.(a) Define absolute potential energy. Derive an expression for the absolute potential energy on the surface of the Earth, considering r=R(Radius of the Earth).

(b) A body of moment of Inertia I=080Kgm² about a fixed axis, rotates with a constnt angular velocity of 100 rads-1, Calculate its angular momentum L and the torque to sustain this motion.

7. (a) What is "Carnot Engine"? Derive formula for its effeciency.

(b) How large must a heating dust be if air moving 3.0m5⁻¹ along it can replenish the air in a room of 300m3 volume every 15min? Assume air's density remains constant.

8. (a) Derive Newton's formula for velocity of sound in air and edescribe the correction made by Laplace. (b) A simple pendulum is 50cm long. What will be its frequency of vibration at a place where g=9.8ms²?

9. (a) Explain Young's double slits experiment. Derive the relation for position of mth bright and dark fringes from the center of the screen.

(b) A telescope is made of an objective of focal length 20cm and an eye place of 5.0cm, both convex lenses. Find the angular magnification.

physics (New Scheme) session (2019)	(Group - I -C		Time : 20 Minutes
You have four	choices for each	tive	Marks: 17
halce which you thin	k is correct, all all	blective type question	on as A, B, C and D. Th
erker or pen. Cuttin	g of filling two ar	t circle in front of t	hat question numbr with sult in zero mark in tha
question.	o a mind two or	more circles will re	sult in zero mark in the
1. Light year is the ur	nit of:		We was
(A) Light	(b) There	16) Valacity	IDI Distance
2. The quantity 2.3 x	10-3 can be written	(C) Velocity	(D) Distance
(A) 0.0023	1818888	(C) 0.23	(D) 2.3
3. Rectangular comp		(C) U.25	(D) 2.3
(A) 30°	(B) 450	(C) 60°	(D) 90°
4. Cross-product of	. 1	(6) 80°	(6) 90-
(A) Zero	(B) 1	(c) î	$(\bar{D}) = \hat{I}$
5. Impulse has same		(6)	(6)
(A) Force		(Ĉ) Mass	(D) Linear momentur
6. Scalar product of			
	(B) Power	(C) Energy	(D) Acceleration
7. In rotational moti	on analogous of forc		ی د
(A) Torque	(B) Inertia	(C) Velocity	(D) Momentum
8. Orbital velocity of	f a satellite of mass	"ms" orbiting around	d earth of mass "M" is:
(A) $\sqrt{\frac{GM}{r}}$	$(\bar{B})\sqrt{\frac{\bar{G}M_{\bar{s}}}{r}}$	(C) <u>am</u>	(D) √ <i>gR</i>
9. Equation of cont	inuity gives conserv	ation of:	2
(A) Energy	(B) Power		(D) Density
10. Product of area	of cross section, velo	ocity and time gives:	20
. (A) Volume	(B) Density	(Ĉ) Mass	(D) Weight
11. Product of frequ	ency "f" and time "f	t" ls: 💪	
(A) 1	(B) Displacement	(C) Velocity	(D) Amplitude
12. If a string vibrate	es in "n" loops, the v	wavelength of station	
$(A)\frac{2l}{n}$	(B) $\frac{nl}{2}$	$(C)\frac{2n}{l}$	$(D)\frac{l}{2n}$
13. Speed of sound	•	No.	
(A) 332 ^m	(B) 333 ^m	(C) 280 ^m	(D) Zero
	ray of light and wa		
	(B) 60°	(C) 45°	(D) 90°
(A) Zero 15. Near point for a		3	The second second
(A) 25cm	(B) 25mm	(C) 25nm	(D) 25dm
16, Average transla	tional K.E of a gas m	nolecule:	
/AL 1 L=	/a\ \r .	(C) = K1.	$(D) \frac{3}{2} kT$
17 And 1	(B) Ni	00% efficient if its col	d temperature is:
*/ An ideal heat e	ngine can only be a	(C) 100K	(D) 100°C

(C) 100K

(B) 0°C

(A) OK

(D) 100°C

Physics (New Scheme) Session (2019)

FAISALABAD BOARD

(Group -I, Class 11th) Subjective SECTION - I

Time: 2:40 Hours Marks: 68

2, Write short answers to any EIGHT parts. Write the dimensions of pressure and density.

II, Define radian and steradian.

III. Two vectors have unequal magnitudes. Can their sum be zero? Explain.

ĺ٧. Suppose the sides of a closed polygon represent vectors arranged head to tail. What is the sum of these vectors?

Give two factors on which turning effect depends.

vI. When a rocket re-enters the atmosphere, its nose cone becomes very hot. Where does this heat energy come from? vil.

Define law of conservation of energy. vill.

Explain the difference between laiminar flow and turbulent flow.

lx. Define venture effect. Also write its relation.

x. If a mass spring system is hung vertically and set into oscillations, why does the motion eventually stop? xi.

Describe some common phenomena in which resonance plays an important role.

Defien periodic motion. Give example. xii. Write short answer to any EIGHT parts. 3.

I, At what point or points in its path does a projectile have its minimum speed, its maximum

II. Can the velocity of object reverse the direction when acceleration is constant? If so, give an

example.

The horizontal range of projectile is four times of its maximum height. What is angle of III. projection?

Define ballistic flight and ballistic trajectory? lv.

When mud flies off the tyre of a moving bicycle, in which direction does it fly? Explain.

Why does a diver change his body positions before and after diving in the pool?

Differentiate between real weight and apparent weight. vii. vIII.

How many radians are there in 2 degree?

Explain the terms crest, trough node and anti-node. ix, How are beats useful in tuning musical instruments? Why sound travel faster in hydrogen than in oxygen? xi. xII. What do you mean by sonar technique? Explain briefly. 4.

Write short answer to any SIX parts.
How would you distinguish between un-polarized light and polarized light?

An oil film spreading over a wet footpath shows colours. Explain how does it happen? Under what conditions two or more sources of light behave as coherent sources? III. Why would it be advantageous to sue blue light with a compound microscope? Iv. Differentiate between linear magnification and angular magnification.

Why does the pressure of a gas in a car tyre increase when it is driven through some distance? vi. is it possible to convrt internal energy into mechanical energy? Explain with an example. vii. Does the entropy of a sytem increase or decrease du to friction? Explain briefly. vill.

State first law of thermodynamics.

SECTION - II

Attempt any THREE questions. Each question carries 08 Marks.

5.(a) Derive Boyle's law and Charle's law from the pressure of a gas equation. (b) Suppose, we are told that the acceleration of a particle moving in a circle of radius r with uniform velocity v is proportional to some power of r, say r, and some power of v, say v,

6.(a) Define vecotor product. Write any four characteristic of vectr product.

(b) A 100g golf ball is moving to the right with a speed of 20ms-1. It makes a head on collision with an 8kg steel ball, initially at rest. Compute velocities of the balls after collision.

7. (a) Discuss the inter-conversion of potential and kinetic energy in absence of air friction. Also

(b) A stationary wave is established in a string which is 120cm long and fixed at both ends. The string vibrates in four segments, at a frequency of 120Hz. Determine its wavelength and the fundamental frequency.

8. (a) What is simple pendulum? Show that motion of simple pendulum is simple harmonic. Also

(b) A gramophone record turntable accelerates from rest to an angular velcotly of 45 rev./min

What is its average angular acceleration?

9. (a) What is simple microscope? Discribe its construction, working and also derive the relation for its angular magnification.

(b) A light of $\lambda = 589$ nm is incident normally on grating having 3000 lines per centimeter. What is the highest order, the spectrum obtained with this grating?

	BAHAWAL	PUR BOARD		
physics (New Scheme) Session (2019)	(Group – I Object	-Class 11th)	Time : 20 Minu Marks : 17	ites
Note: You have four cho	lces for each oh	lective type au	estion as A. P. C. and	D The
choice which you think is	correct; fill that	circle in front	of that question num	hr with
marker or pen. Cutting o	of filling two or i	more circles wil	l result in zero mark	in that
question.			riesuit in zero mark	in that
1. The unit Vector in the	direction of A	s:	Billian Parjak.	
(A) $\hat{A} = \frac{A}{\bar{A}}$ (B)			(D) $\vec{A} = \frac{A}{\hat{A}}$	
2. A measurement take 0.45cm, It has fractio	n by Varnier Calli	per with least co	ount as 0.01cm is reco	rded as
	0.02	(C) 0.03	(D) 0.45	
3. The numerical value	of constant in an	v formula canot	(D) 0.45	i
dimensional analysis	however It can I	he found hy	be determined by	
(A) Addition (B)	Physical Quantiti	ies (C) Evperime	nts (D) Unagetalai	in th
4. If $\overline{A} \times \overline{B}$ is along y-ax	de then I and	nes (o) experime	nts (D) Uncertaini	τγ
(A) x-y plane (B	No, then A and A		(0)	20 D
		(C) Space	(D) x-y plane	
5. Angel 30° is equal to);	ι π	7	7
$(A)\frac{\pi}{2}$ rad (B)	3	(C) $\frac{\pi}{4}$ rad	(D) $\frac{\pi}{6}$ rad	2
6. One watt Hour is eq				
(A) 3.6 MJ (B		(C) 36 KJ	(D) 36 MJ	12 14 14
7. Everythig in the vast (A) Rest (B)	ness of space is in	a state of:	Mada (D) Day of	
8. The Rotational K.E.	of Disc is equal to	on (C) Prepetual	Motion (D) Projectile N	Action
$(A) \frac{1}{4} \text{ mv}^2$			2002	
			D) Iw²	
9. If the initial Phase I	4		20	
(A) $x = x^2 \circ Sln wt$				
10. Bernoulli's Equatio	7		1.5.1	
			Momentum (D) Energy	
11. A 20 meter high tank		ce appears at its n (C) 11.5 ms		will be:
(A) 10 ms ⁻¹ (12. When an observer	B) 14 ms ⁻¹			e with
spee v, the waves			Jource, Serialing Wave	s with
	(B) $\frac{v+u_o}{a}$	(C) 2 - 11-	(D) = 1	7.4
^	^		$(D) = \frac{\lambda}{v + u_o}$	
13. The magnifying po	wer of a magnity		$(D)\frac{d}{c}+1$	and p
(A) 1 - $\frac{a}{c}$	(B) $1 - \frac{f}{d}$	$\mathcal{E}(C)\frac{I}{d}$	(D) $\frac{n}{f} + 1$. 13
14. If the temperature of	of sink is equal to ab	solute zero, the ef	ficiency of heat engine sh	oulde be
(A) 100%	(B) 50%	(C) Zero	(D) Infinity	
15. When a Transvers	e Wave travelling	In rare medium	, incident on denser m	edium
after reflection ph	hase changes by:	(6) 000	(5) 00	
(A) 360°	(B) 180°	(C) 90°	(D) 0°	
16. If C_p for a gas is $\frac{7R}{2}$	then the value	of C _v will be:		
$(A)\frac{3R}{3}$	(B) $\frac{5R}{2}$	(C) $\frac{9R}{2}$	(D) R	
17. Polarization prov	es that light wave	es are:		
(A) Longitudinal	(B) Stationary	(C) Matter	(D) Transve	rs
	4			

BAHAWALPUR BOARD

(Group -I, Class 11th) Subjective SECTION - I

Time: 2:40 Hours Marks : 68

Physics (New Scheme) Session (2019)

Write short answers to any EIGHT parts.

Show that Einstein Equation E=mc2 is dimensionally correct. Given that V= (5.2± 0.1) volt. Find its percentage uncertainity.

II. m.

Can a body rotate about its centre of gravity under the action of its weight? Explain. iv.

Can the magnitude of a vector have a negative value? Discuss. V.

vi. Defien Joule using formula for the work done.

When a rocket re-enters the atmosphere, its nose cone becomes hot. Where does this heat vii. energy come from?

viii. Define Drag Force. Give its formula.

Two row boats moving parallel in the same direction are pulled towards each other, ix. Explain.

Does the Acceleration of a Simple Harmonic Oscillator remain constant during its motion? x. is the Acceleration ever zero? Explain.

If a mass spring system is hung vertically and set into oscillations, why does the motion xi. eventually stop?

xil. Name two characteristic of Simple Harmonic Motion.

3. Write short answer to any EIGHT parts.

Explain the condition in which velocity "v" is zero and acceleration of a car is not zero.

II. Define Isolated System. Give its example.

III. Define Impulse. Give its units.

iv. At what point or points in its path does a projectile have its minimum speed, its maximum

Explian what is meant by Centripetal Force? Give its formula. ٧i،

Show that Orbital Angular Momentum is given as $L_0 = mvr$. vii. Give one practical application of the Rotational Kinetic Energy

viii. Why does a Diver change his body position before and after diving in the pool?

ix. What is the effect of pressure of the Medium on the speed of sound?

Differentiate between Transverse and Longitudinal Waves. χİ. Explain why sound travels faster in Warm Air than Cold Air?

Exaplian the term Nodes and Antinodes. Xii. Write short answer to any SIX parts. 4.

i. For what purpose Huygen's Principle is used?

How would you manage to get more orders of Spectra using a differention grating? An oil film spreading over a wet footpath shows colours. Explain how does it happen? 111. iv.

If a person was looking through a telescope at the full moon, how would the appearance of the moon be changed by covering half of the objective lens?

Define Resolving Power. Give its expression.

What happens to the temperature of the room, when an air conditioner is left running on a vi. table in the middle of the room?

is it possible to construct a heat engine that will not expel heat into the atmosphere? vII. Carnot Cycle provides the basis to define a temperature scale that is independent of vill. material properties, Explain.

Define Entropy. Explian in terms of Second Law of Thermodynamics. İx. SECTION = 11

Attempt any THREE questions. Each question carries 08 Marks.

5.(a) Define Molar Specific Heats of Gases and prove that the relation $C_P = C_V = R$. (b) The length and width of rectangular plate are measured to be 15.3 and 12.80 cm respectively. Find the correct area of the plate.

6.(a) State and explain law of Conservation of Linear Momentum.

(b) A load of 10 N is suspended from a clothes line. This distorts the line so that it makes an angle of 15° with the horizontal at each end. Find the tension in the clothes line.

7. (a) Prove that the work done is independent of the path followed in Gravitational Field. (b) An Organ Pipe has a length of 50 cm. Find the frequency of its fundamental note and the next harmonic when it is open at both ends.

8. (a) Discuss the energy conservation in SHM.

apart. Find the Focal Length of the lenses.

(b) Calculate the angular momentum of a Star of Mass 2 x 1030 Kg and radius 7.0 x 105 Km.

9. (a) What is interference of Light? Discuss the Young's Double Slit Experiment. Also Derive the relation for Fringe Spacing. (b) An Astronomical Telescope having magnifying power of 5 consists of two thin lenses 24 cm

(0)	LAHORE	BOARD		
hysics (New Scheme)	(Group - I -	the state of the s	Time: 20 Minutes	
ession (2019)	Objectiv	/e	Marks: 17	
vote: You have four choic	es for each obje	ctive type questio	n as A, B, C and D. The	
hoice which you think is c	orrect; fill that of	ircle in front of th	at question numbr with	
marker or pen. Cutting of question.	filling two or m	ore circles will res	ult in zero mark in that	
1. The ratio of 1 femtomet				
(A)10 ⁻⁶ (B) 10			(0) 408	
2- In the relation of F=6πη	in Dimonday -	(C) 10 ^{,7}	(D) 10 ⁸	
(A) [M-1 LT-1] (B) [N	7 0, Dimension o Al-1 Ti	r coefficient of visc	D) ML ⁻¹ T ⁻¹]	
3- If $\vec{F} = (2i + 4j) N$; $d = (5)$	i + 2i) m work de	(C) (IVI = L = I)	O) MIL 1 1	
(A) 15 J (B) 18	8 J	/C\ zero	(D) -18 J	
4- The sum of two prepen	dicular forces 8 N	l and 6 N le	(0)-101	
(A) 2N (B) 1	4 N	(C) 10 N	(D) -2 N	
5. The distance covered b	y a freely falling	body in first 2 seco		
velocity was zero:			17	
(A) 9.8m (B) 3		(C) 19.6m	(D) 4.9m	
6. Value of solar constant	t is:			
(A) 1.4 Wm ⁻² (B) 1				
7. Relation between the	speed of disc an			
(A) $V_{\text{disc}} = \sqrt{\frac{3}{4}} V_{\text{hoop}}$		(B) $V_{\text{disc}} = \sqrt{\frac{4}{3}} V_{\text{ho}}$	10p	
$(C)V_{disc} = \sqrt{\frac{2}{5}}V_{hoop}$		$(D)V_{disc} = 2V_{hoo}$	p. 20.	
8. 2 revolutions are equ	al to:		.65	
(A) π rad (B)	$\frac{3\pi}{2}$ rad	(C) 2 π rad	(D) 4 π rad	
9. Terminal velocity Vt i		dius r of spherical o	bjects as:	
(A) $V_t \propto r^2$ (B)		(C) $V_t \propto \frac{1}{r}$	$(D) V_t \propto \frac{1}{r^2}$	
		The second secon		
10. The unit of $\frac{1}{2}pV^2$ in B				
	Pressure	(C) Work	(D) Power	
11. Base units of spring of		(C) Kg ms ⁻²	(D) Kgs ⁻²	
(A) kg ⁻¹ s ⁻¹ (B)		(C) VB III3	(F) UB3	
12. Speed of sound at 0°	280 ms-1	(C) 1400 ms ⁻¹	(D) 5500 ms ⁻¹	
(A) 332 ms ⁻¹ (B) 13. Two identical waves	moving in same			
(A) Interference (B)	Reats	(C) Stationary w	aves (D) Diffraction	
	locats.	80,4,013,101,131,111	the like in	
14. Bragg's equation is:	V d sinA = n\	(C) d sin $\theta = n^{\frac{\lambda}{2}}$	(D) d $\sin\theta = 2\lambda$	
(A) 2d sin $\theta = n\frac{\lambda}{2}$ (B)	1 0 3100 = 11V			
15. If fo= 100 cm fe=5cm	leugth and magn	Inying power or all a	(D) 105 cm ; 20	
(A) 0.05 cm; 20 (B	olocity is related	to the absolute te	mperature of a ideal gas as	
	igigeith is feigren	(C) $V_{rms} \propto \sqrt{T}$	(D) V _{rms} ≪ ½	
(A) V _{rms} ∝T (E	3) Vims es l	/el Atmar A i	P. Almer A	
17. If P= Pressure ; V=V	olume of a gas P	4C) Power	(D) Tomposture	
(A) Work	3) Density	(C) Power	(D) Temperature	

Physics (New Scheme) Session (2019)

LAHORE BOARD (Group -I, Class 11th) Subjective SECTION - I

Time: 2:40 Hours Marks: 68

2, Write short answers to any EIGHT parts.

Write down the two uses of dimensional analysis. 11. What are the characteristics of an ideal standard?

III. If A = 4i - 4j, what is the orientation of A?

ĺ٧. Define resultant vector and component of a vector.

The magnitude of the sum of two vectors is zero. What are the conditions to get this? ٧l. A car is moving along a circle of radius r. it completes four revolutions and

teminates its journey at starting point. How much work is done by the car? Explain. vII. How energy is obtained by water waves and what is the source of this energy?

vill. Explain the term systolic and diastolic pressure.

ix. Two row boats moving parallel in the water are pulled towards each other. Explain why?

is any relation existed between damping and resonance? Explain. xi.

In relation to SHM, explain the equation y=A Sin ($\omega t + \emptyset$) A mass-spring system is vibrating with amplitude 10cm. Find its K.E. and P.E at equilibrium position, when spring constant is 20 Nm⁻¹.

Write short answer to any EIGHT parts. xii.

What is the difference between uniform velocity and uniform acceleration?

Show that time rate of change of momentum of a body equals the applied force. IIi. A 1500 kg car has its velocity reduced from 20ms⁻¹ to 15ms⁻¹ in 3.0 seconds. How large was the average retarding force?

iv. Can the velocity of an object reverse the direction when acceleratin is constant? If so, give an example.

Write down the uses of telecommunication satellites.

Show that $S = r \theta$ where S = Arc length, r = radius of the circle, $\theta = angle$ in radian? vi. What do you mean INTELSAT VI? What are the frequencies on which it operates? vil. A disc without slipping rolls down a hil of height 10.0 m. If the disc starts from rest viii. at the top of the hill, what is the speed at the bottom?

How the speed of sound change with the density of the medium? ix.

A pipe has a length of 1 m. Determine the frequencies of the fundamental, if the x. pipe is open at both ends. Speed of sound = 340 ms⁻¹.

State Doppler Effect. Write down its one application. How Doppler Effect can be used to monitor blood flow? xii.

4,

Write short answer to any SIX parts.
What is Bragg's law? Derive Bragg's equation.
Explain whether the Young's experiment is an experiment for studying interference or ii. differaction effects of light.

How would you manage to get more orders of spectra during a diffraction grating? Write two differences between angular magnification and resolving power. iv.

How a single bi-convex lens can be used as a magnifying glass? Derive Charles' law from kinetic theory of gases. vi.

vii. Justify! Work and heat are similar,

viii. Show that: Change in entropy is always positive.

What happens to the temperature of the room when an air-conditioner is left running on a ix. table in the middle of the room?

Attempt any THREE questions. Each question carries 08 Marks.

5.(a) Prove the molar specific heat of a gas at constant pressure C_P is greater than molar specific heat at constant volume C_V by an amount equal to universal gas constant R.

(b) Suppose, we are told that the acceleration of a particle moving in a circle of radius r with uniform speed v is proportional to some power of r, say r, and some power of v, say v,

determine the powers of r and v.

6.(a) Explain the method of vector addition by rectangular components.

(b) A foot ball is thrown upward with an angle of 30° with respect to the horizontal. To throw a 40m pass what must be the initial speed of the ball?

7. (a) Define absolute potential energy. Derive relation for absolute P.E. of a body of mass m. The string vibrates in four segments, at a frequency of 120 Hz. Determine its wavelength and the fundamental frequency. and the fundamental frequency.

8. (a) Define SHM. Prove that total energy remains conserved in mass-spring system, oscillating with SHM.

(b) A gramophone record turntable accelerate from rest to an angular velocity of 45.0 rev min' in 1.60 s. What is its average angular acceleration?

9. (a) What is compound microscope? Describe its construction and working also calculate

its magnification.

(b) In a double slit experiment the second order maximum occurs at θ= 0.25°. The wavelength is 650nm. Determine the slit separation.

Answers (Sahiwal Board)

						-	NAME OF TAXABLE		-	CONT. N. L. PROSE	-	and the last of	Mary of the Art	-	-	
(12	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
A	A	В	D	Α	С	D	В	C	В	С	Α	С	D	D	C	В
10	-	-				THE REAL PROPERTY.		OF STATE	THE REAL PROPERTY.	MANUFACTURED TO SERVICE AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF T	1000	•				

Answers (Faisalabad Board)

1 2 3 4 5 6 7 8 9 10	11 12 13 14 15 16	17
DADCDBAACA	A A D D A D	Α

Answers (Bahawalpur Board)

												ACCUPANTED NO.	and the same	-			1
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	
1	B	c	D.	D	В	С	Α	C	D	В	Α	D	Α	В	В	D	
10	0	_					-	-		-	and the same of						

Answers (D.G. Khan Board)

		-								-						
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1	4	,	7				-	-	THE PERSON NAMED IN					_		
	8	Α	C	Α	В	D	C	D	C	C	D	A	. D	В	C	<u>.</u>
- D	В	Α.									intight					

Answers (Sargodha Board)

			1 -										4.4	15	16	17
4		3	1	5	6	7	8	9	10	11	. 12	13	14	15	10	<u>ک</u> ۔
1	2	J	- 4	-		-					٨	D	C	c	A	Ø. B
A	Δ	В	Α	D	D	A	A	В	В	В	A	D			5	
A	_	, D	, ,	_	-		- Company								65	

Answers (Multan Board)

													THE RESERVE AND ADDRESS OF THE	7.5			
								•	10	11	12	13	14	15	16	17	
1	2	3	4	5	6	7	8	9	10				7	A	С	D	1
В	В	A	D	D	В	C	Α	В	C	D	R	2.5	(Q)				1

Answers (Rawalpindi Board)

1	1	2	3	4	5	6	7	8	9	10	11	12 B	13 A	14 B	15 B	16 B	17 C	
	A	C	В	A	В	Α	Α	D	A	D								

Answers (Gujranwa<mark>la B</mark>oard)

							0	9	10	11	12	13	14	15	16	17	
1	2	3	4	5	6	7	8	9	0	D	C	A	D	C	Α	В	
C	В	Α	В	В	C	В	D	D				4.00	19 THE	1.11	,		

Answers (Lahore Board)

					-	9	a	q	10	11	12	13	14	15	16	17	
1	2	3	4	5	6	7	0	منتسبت ا	B	C	A	Α	C	D	C	A	
A	D	В	C	C	B	В	U 		30.40.46	. 44 14	4 4 5	**	**		,		

Board Papers 2021

Physics (New Scheme) (Group – I-Class 11 th) Marks : 17 Note: You have four choices for each objective type question as A, B, C and D. The Choice which you think its correct; fill that circle in front of that question numbr with marker or pen. Cutting of filling two or more circles will result in zero mark in that question. 1. The term "phg" in Bernoulli's equation has the same units as: (A) work (B) energy (C) pressure (D) flow rate 2. An Ideal gas performs 10J of work while expanding adiabatically. The change in its internal energy is: (A) 10J (B) 10J (C) 100J (D) - 200J 3. Average translational K.E. of a gas molecule is: (A) $\frac{3}{2}KT$ (B) $\frac{1}{2}KT$ (C) $\frac{2}{3}KT$ (D) KT 4. The K.E of an object of mass "m" is "E" its momentum will be: (A) 2 Em (B) $\sqrt{\frac{2E}{m}}$ (C) $\sqrt{\frac{1}{2}Em}$ (D) $\sqrt{2Em}$ 5. The frequency of waves produced in microwave oven is: (A) 1435 MHz (B) 2850 MHz (C) 2450 MHz (D) 4250 MHz 6. The increase in velocity of sound in air for 1"C rise in temperature is: (A) 61 cm/s (B) 0.61 cm/s (C) 61 m/s (D) 1.61 m/s 7. The ratio of velocity of disc to velocity of hoop is: (A) $\frac{2}{\sqrt{3}}$ (B) $\frac{4}{\sqrt{3}}$ (C) $\frac{2}{3}$ (D) $\frac{4}{3}$ 8. The wave length of inth mode of stationary waves in closed pipe is: (A) $\frac{2}{n}$ (B) $\frac{4}{\sqrt{3}}$ (C) $\frac{2}{3}$ (D) $\frac{4}{3}$ 8. The wave length of inth mode of stationary waves in closed pipe is: (A) $\frac{2}{n}$ (B) $\frac{4}{\sqrt{3}}$ (C) $\frac{2}{3}$ (D) $\frac{4}{n}$ (D) $2\pi rad/s$ 10. If Initial velocity of projectile becomes doubled. The time of flight will become: (A) 4 times (B) Half (C) 2 times (D) 8 times (A) 1.B = 0 (B) $\frac{1}{\sqrt{3}}$ (C) $\frac{1}{\sqrt{3}}$ (D) $\frac{1}{$
Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct; fill that circle in front of that question numbr with marker or pen. Cutting of filling two or more circles will result in zero mark in that question. 1. The term "phg" in Bernoulli's equation has the same units as: (A) work (B) energy (C) pressure (D) flow rate 2. An ideal gas performs 10! of work while expanding adiabatically. The change in its internal energy is: (A) 10.] (B) -10.] (C) 100.] (D) - 200.] 3. Average translational K.E. of a gas molecule is: (A) $\frac{3}{2}KT$ (B) $\frac{1}{2}KT$ (C) $\frac{2}{3}KT$ (D) KT 4. The K.E of an object of mass "m" is "E" its momentum will be: (A) 2 Em (B) $\sqrt{\frac{2E}{m}}$ (C) $\sqrt{\frac{1}{2}Em}$ (D) $\sqrt{2Em}$ 5. The frequency of waves produced in microwave oven is: (A) 1435 MHz (B) 2850 MHz (C) 2450 MHz (D) 4250 MHz 6. The increase in velocity of sound in air for 1 °C rise in temperature is: (A) $\frac{2}{\sqrt{3}}$ (B) $\frac{4}{\sqrt{3}}$ (C) $\frac{2}{3}$ (D) $\frac{4}{3}$ 8. The wave length of nth mode of stationary waves in closed pipe is: (A) $\frac{2!}{\sqrt{3}}$ (B) $\frac{4!}{\sqrt{3n-1}}$ (C) $\frac{4!}{n}$ (D) $\frac{4!}{2n+1}$ 9. 1 rev / min is equal to: (A) $\frac{4}{6} raul / s$ (B) $\frac{\pi}{30} raul / s$ (C) $\frac{\pi}{15} raul / s$ (D) $2\pi raul / s$ 10. If initial velocity of projectile becomes doubled. The time of flight will become: (A) 4 times (B) 4 initial mass (B) $60^{\circ\circ\circ\circ}$ (C) $\frac{\pi}{15} raul / s$ (D) $\frac{\pi}{30} ra$
marker or pen. Cutting of filling two or more circles will result in zero mark in that question. 1. The term "phg" in Bernoulli's equation has the same units as: (A) work (B) energy (C) pressure (D) flow rate (D) flow rate (D) flow rate (E) an ideal gas performs 10J of work while expanding adiabatically. The change in its internal energy is: (A) 10 J (B) 10 J (C) 100 J (D) - 200 J (D) - 200 J (E) - 200 J (D) - 200 J (E) - 200 J (D) - 200 J (E) - 200 J (D) - 200 J (E) - 200 J (D) - 200 J (E) - 200 J (D) - 200 J (E) - 200 J (D) - 200 J (E) - 200 J (D) - 200 J (E) - 200 J (D) - 200 J (E) - 200 J (D) - 200 J (D) - 200 J (D) - 200 J (D) - 200 J (D)
question. 1. The term "phg" in Bernoulli's equation has the same units as: (A) work (B) energy (C) pressure (D) flow rate (D) flow rate (D) and internal energy is: (A) 10 J (D) - 200 J
1. The term "phg" in Bernoulli's equation has the same units as: (A) work (B) energy (C) pressure (D) flow rate 2. An ideal gas performs 10J of work while expanding adiabatically. The change in its internal energy is: (A) 10J (B) -10J (C) 100J (D) -200J 3. Average translational K.E. of a gas molecule is: (A) $\frac{3}{2}KT$ (B) $\frac{1}{2}KT$ (C) $\frac{2}{3}KT$ (D) KT 4. The K.E of an object of mass "m" is "E" its momentum will be: (A) 2 Em (B) $\sqrt{\frac{2E}{m}}$ (C) $\sqrt{\frac{1}{2}Em}$ (D) $\sqrt{2Em}$ 5. The frequency of waves produced in microwave oven is: (A) 1435 MHz (B) 2850 MHz (C) 2450 MHz (D) 4250 MHz 6. The increase in velocity of sound in air for 1"C rise in temperature is: (A) 61 cm/s (B) 0.61 cm/s (C) 61 m/s (D) 1.61 m/s The ratio of velocity of disc to velocity of hoop is: (A) $\frac{2}{\sqrt{3}}$ (B) $\frac{4}{\sqrt{3}}$ (C) $\frac{2}{3}$ (D) $\frac{4}{3}$ 8. The wave length of nth mode of stationary waves in closed pipe is: (A) $\frac{2}{n}$ (B) $\frac{4I}{2n-1}$ (C) $\frac{4I}{n}$ (D) $\frac{4I}{2n+1}$ 9. 1 rev/min is equal to: (A) $\frac{\pi}{6}$ read/s (B) $\frac{4I}{30}$ read/s (C) $\frac{\pi}{15}$ read/s (D) $\frac{2\pi}{2n+1}$ (D) 8 times (A) 4 times (B) Half (C) 2 times (D) 8 times (A) 4 times (B) Half (C) 30" (D) 90" 12. $I_1(K \times I) = I_1(K \times$
2. An ideal gas performs 10J of work while expanding adiabatically. The change in its internal energy is: (A) 10J (B) -10J (C) 100J (D) -200J 3. Average translational K.E. of a gas molecule is: (A) $\frac{3}{2}$ KT (B) $\frac{1}{2}$ KT (C) $\frac{2}{3}$ KT (D) KT 4. The K.E of an object of mass "m" is "E" its momentum will be: (A) 2 Em (B) $\sqrt{\frac{2E}{m}}$ (C) $\sqrt{\frac{1}{2}}$ Em (D) $\sqrt{2Em}$ 5. The frequency of waves produced in microwave oven is: (A) 1435 MHz (B) 2850 MHz (C) 2450 MHz (D) 4250 MHz 6. The increase in velocity of sound in air for 1"C rise in temperature is: (A) 61 cm/s (B) 0.61 cm/s (C) 61 m/s (D) 1.61 m/s 7. The ratio of velocity of disc to velocity of hoop is: (A) $\frac{2}{\sqrt{3}}$ (B) $\frac{4}{\sqrt{3}}$ (C) $\frac{2}{3}$ (D) $\frac{4}{3}$ 8. The wave length of nth mode of stationary waves in closed pipe is: (A) $\frac{2I}{n}$ (B) $\frac{4I}{2n-1}$ (C) $\frac{4I}{n}$ (D) $\frac{4I}{2n+1}$ 9. 1 rev/min is equal to: (A) $\frac{\pi}{6}$ ratif / s (B) $\frac{\pi}{30}$ ratif / s (C) $\frac{\pi}{15}$ ratif s (D) $\frac{2\pi}{2n+1}$ ratifies velocity of projectile becomes doubled. The time of flight will become: (A) 4 times (B) Half (C) 2 times (D) 8 times (A) 45" (B) 60" (C) 30" (D) 90" 12. $i.(k \times i) =$ (A) 1 (B) $i.(k \times i) =$ (A) 1 (B) $i.(k \times i) =$ (B) $i.(k \times i) =$ (C) 10 - 10 - 10
2. An ideal gas performs 10J of work while expanding adiabatically. The change in its internal energy is: (A) 10J (B) -10J (C) 100J (D) -200J 3. Average translational K.E. of a gas molecule is: (A) $\frac{3}{2}$ KT (B) $\frac{1}{2}$ KT (C) $\frac{2}{3}$ KT (D) KT 4. The K.E of an object of mass "m" is "E" its momentum will be: (A) 2 Em (B) $\sqrt{\frac{2E}{m}}$ (C) $\sqrt{\frac{1}{2}}$ Em (D) $\sqrt{2Em}$ 5. The frequency of waves produced in microwave oven is: (A) 1435 MHz (B) 2850 MHz (C) 2450 MHz (D) 4250 MHz 6. The increase in velocity of sound in air for 1"C rise in temperature is: (A) 61 cm/s (B) 0.61 cm/s (C) 61 m/s (D) 1.61 m/s 7. The ratio of velocity of disc to velocity of hoop is: (A) $\frac{2}{\sqrt{3}}$ (B) $\frac{4}{\sqrt{3}}$ (C) $\frac{2}{3}$ (D) $\frac{4}{3}$ 8. The wave length of nth mode of stationary waves in closed pipe is: (A) $\frac{2I}{n}$ (B) $\frac{4I}{2n-1}$ (C) $\frac{4I}{n}$ (D) $\frac{4I}{2n+1}$ 9. 1 rev/min is equal to: (A) $\frac{\pi}{6}$ ratif / s (B) $\frac{\pi}{30}$ ratif / s (C) $\frac{\pi}{15}$ ratif s (D) $\frac{2\pi}{2n+1}$ ratifies velocity of projectile becomes doubled. The time of flight will become: (A) 4 times (B) Half (C) 2 times (D) 8 times (A) 45" (B) 60" (C) 30" (D) 90" 12. $i.(k \times i) =$ (A) 1 (B) $i.(k \times i) =$ (A) 1 (B) $i.(k \times i) =$ (B) $i.(k \times i) =$ (C) 10 - 10 - 10
(A) 10 J (B) -10 J (C) 100 J (D) -200 J Average translational K.E. of a gas molecule is: (A) $\frac{3}{2}$ KT (B) $\frac{1}{2}$ KT (C) $\frac{2}{3}$ KT (D) KT 4. The K.E of an object of mass "m" is "E" its momentum will be: (A) 2 Em (B) $\sqrt{\frac{2E}{m}}$ (C) $\sqrt{\frac{1}{2}}$ Em (D) $\sqrt{2Em}$ 5. The frequency of waves produced in microwave oven is: (A) 1435 MHz (B) 2850 MHz (C) 2450 MHz (D) 4250 MHz 6. The increase in velocity of sound in air for 1" C' rise in temperature is: (A) 61 cm/s (B) 0.61 cm/s (C) 61 m/s (D) 1.61 m/s 7. The ratio of velocity of disc to velocity of hoop is: (A) $\frac{2}{\sqrt{3}}$ (B) $\frac{4}{\sqrt{3}}$ (C) $\frac{2}{3}$ (D) $\frac{4}{3}$ 8. The wave length of nth mode of stationary waves in closed pipe is: (A) $\frac{2I}{n}$ (B) $\frac{4I}{2n-1}$ (C) $\frac{4I}{n}$ (D) $\frac{4I}{2n+1}$ 9. 1 rev / min is equal to: (A) $\frac{\pi}{6}$ rad / s (B) $\frac{\pi}{30}$ rad / s (C) $\frac{\pi}{15}$ rad / s (D) 2π rad / s 10. If Initial velocity of projectile becomes doubled. The time of flight will become: (A) 4 times (B) Half (C) 2 times (D) 8 times (A) 4.5" (B) 60" (C) 30" (D) 90" 12. i (A) i (B) j (C) i (D) i (D) 0 13. If two non-zero vectors i & i are parallel to each other then: (A) i (B) i (C) i (D) i (D) 0
(A) 10 J (B) -10 J (C) 100 J (D) -200 J Average translational K.E. of a gas molecule is: (A) $\frac{3}{2}$ KT (B) $\frac{1}{2}$ KT (C) $\frac{2}{3}$ KT (D) KT 4. The K.E of an object of mass "m" is "E" its momentum will be: (A) 2 Em (B) $\sqrt{\frac{2E}{m}}$ (C) $\sqrt{\frac{1}{2}}$ Em (D) $\sqrt{2Em}$ 5. The frequency of waves produced in microwave oven is: (A) 1435 MHz (B) 2850 MHz (C) 2450 MHz (D) 4250 MHz 6. The increase in velocity of sound in air for 1" C' rise in temperature is: (A) 61 cm/s (B) 0.61 cm/s (C) 61 m/s (D) 1.61 m/s 7. The ratio of velocity of disc to velocity of hoop is: (A) $\frac{2}{\sqrt{3}}$ (B) $\frac{4}{\sqrt{3}}$ (C) $\frac{2}{3}$ (D) $\frac{4}{3}$ 8. The wave length of nth mode of stationary waves in closed pipe is: (A) $\frac{2I}{n}$ (B) $\frac{4I}{2n-1}$ (C) $\frac{4I}{n}$ (D) $\frac{4I}{2n+1}$ 9. 1 rev / min is equal to: (A) $\frac{\pi}{6}$ rad / s (B) $\frac{\pi}{30}$ rad / s (C) $\frac{\pi}{15}$ rad / s (D) 2π rad / s 10. If Initial velocity of projectile becomes doubled. The time of flight will become: (A) 4 times (B) Half (C) 2 times (D) 8 times (A) 4.5" (B) 60" (C) 30" (D) 90" 12. i (A) i (B) j (C) i (D) i (D) 0 13. If two non-zero vectors i & i are parallel to each other then: (A) i (B) i (C) i (D) i (D) 0
3. Average translational K.E. of a gas molecule is: (A) $\frac{3}{2}KT$ (B) $\frac{1}{2}KT$ (C) $\frac{2}{3}KT$ (D) KT 4. The K.E of an object of mass "m" is "E" its momentum will be: (A) 2 Em (B) $\sqrt{\frac{2E}{m}}$ (C) $\sqrt{\frac{1}{2}Em}$ (D) $\sqrt{2Em}$ 5. The frequency of waves produced in microwave oven is: (A) 1435 MHz (B) 2850 MHz (C) 2450 MHz (D) 4250 MHz 6. The increase in velocity of sound in air for 1"C rise in temperature is: (A) 61 cm/s (B) 0.61 cm/s (C) 61 m/s (D) 1.61 m/s 7. The ratio of velocity of disc to velocity of hoop is: (A) $\frac{2}{\sqrt{3}}$ (B) $\frac{4}{\sqrt{3}}$ (C) $\frac{2}{3}$ (D) $\frac{4}{3}$ 8. The wave length of nth mode of stationary waves in closed pipe is: (A) $\frac{2}{n}$ (B) $\frac{4l}{2n-1}$ (C) $\frac{4l}{n}$ (D) $\frac{4l}{2n+1}$ 9. 1 rev/min is equal to: (A) $\frac{\pi}{6}$ rad/s (B) $\frac{\pi}{30}$ rad/s (C) $\frac{\pi}{15}$ rad/s (D) 2π rad/s 10. If initial velocity of projectile becomes doubled. The time of flight will become: (A) 4 times (B) Half (C) 2 times (D) 8 times (A) 45 " (B) 60 " (C) $\frac{\pi}{30}$ (D) $\frac{\pi}{$
4. The K.E of an object of mass "m" is "E" its momentum will be: (A) $\frac{3}{2}KT$ (B) $\frac{1}{2}KT$ (C) $\frac{2}{3}KT$ (D) KT 4. The K.E of an object of mass "m" is "E" its momentum will be: (A) 2 Em (B) $\sqrt{\frac{2E}{m}}$ (C) $\sqrt{\frac{1}{2}Em}$ (D) $\sqrt{2Em}$ 5. The frequency of waves produced in microwave oven is: (A) 1435 MHz (B) 2850 MHz (C) 2450 MHz (D) 4250 MHz 6. The increase in velocity of sound in air for 1"C rise in temperature is: (A) 61 cm/s (B) 0.61 cm/s (C) 61 m/s (D) 1.61 m/s 7. The ratio of velocity of disc to velocity of hoop is: (A) $\frac{2}{\sqrt{3}}$ (B) $\frac{4}{\sqrt{3}}$ (C) $\frac{2}{3}$ (D) $\frac{4}{3}$ 8. The wave length of nth mode of stationary waves in closed pipe is: (A) $\frac{2I}{n}$ (B) $\frac{4I}{2n-1}$ (C) $\frac{4I}{n}$ (D) $\frac{4I}{2n+1}$ 9. 1 rev / min is equal to: (A) $\frac{\pi}{6} \text{ raid}/s$ (B) $\frac{\pi}{30} \text{ raid}/s$ (C) $\frac{\pi}{15} \text{ raid}/s$ (D) $2\pi \text{ raid}/s$ 10. If initial velocity of projectile becomes doubled. The time of flight will become: (A) 4 times (B) Half (C) 2 times (D) 8 times (A) 45^{m} (B) 60^{m} (C) 30^{m} (D) 90" 12. $i.(k \times i) = (B) 60^{m}$ (C) $i.(B) = 10^{m}$ (D) 0 13. If two non-zero vectors $i.(B)$ B are parallel to each other then: (A) $i.(B) = 0$ (B) $i.(B)$
(A) $\frac{3}{2}KT$ (B) $\frac{1}{2}KT$ (C) $\frac{2}{3}KT$ (D) KT 4. The K.E of an object of mass "m" is "E" its momentum will be: (A) 2 Em (B) $\sqrt{\frac{2E}{m}}$ (C) $\sqrt{\frac{1}{2}Em}$ (D) $\sqrt{2Em}$ 5. The frequency of waves produced in microwave oven is: (A) 1435 MHz (B) 2850 MHz (C) 2450 MHz (D) 4250 MHz 6. The increase in velocity of sound in air for 1 "C' rise in temperature is: (A) 61 cm/s (B) 0.61 cm/s (C) 61 m/s (D) 1.61 m/s 7. The ratio of velocity of disc to velocity of hoop is: (A) $\frac{2}{\sqrt{3}}$ (B) $\frac{4}{\sqrt{3}}$ (C) $\frac{2}{3}$ (D) $\frac{4}{3}$ 8. The wave length of nth mode of stationary waves in closed pipe is: (A) $\frac{2I}{n}$ (B) $\frac{4I}{2n-1}$ (C) $\frac{4I}{n}$ (D) $\frac{4I}{2n+1}$ 9. $1 \text{ rev} / \text{min is equal to:}$ (D) $\frac{4I}{3}$ 10. If initial velocity of projectile becomes doubled. The time of flight will become: (A) 4 times (B) $Half$ (C) 2 times (D) 8 times (A) 4 times (B) $Half$ (C) 2 times (D) 8 times (A) 45 " (B) 60 " (C) 30 " (D) 90 " 12. $i.(k \times i) =$ (A) $i.(k \times i) =$ (B) $i.(k \times i) =$ (C) $i.(k \times i) =$ (D) $i.($
(A) 2 Em (B) $\sqrt{\frac{2E}{m}}$ (C) $\sqrt{\frac{1}{2}}$ Em (D) $\sqrt{2Em}$ 5. The frequency of waves produced in microwave oven is: (A) 1435 MHz (B) 2850 MHz (C) 2450 MHz (D) 4250 MHz 6. The increase in velocity of sound in air for 1"C rise in temperature is: (A) 61 cm/s (B) 0.61 cm/s (C) 61 m/s (D) 1.61 m/s 7. The ratio of velocity of disc to velocity of hoop is: (A) $\frac{2}{\sqrt{3}}$ (B) $\frac{4}{\sqrt{3}}$ (C) $\frac{2}{3}$ (D) $\frac{4}{3}$ 8. The wave length of nth mode of stationary waves in closed pipe is: (A) $\frac{2I}{n}$ (B) $\frac{4I}{2n-1}$ (C) $\frac{4I}{n}$ (D) $\frac{4I}{2n+1}$ 9. 1 rev / min is equal to: (C) $\frac{4I}{n}$ (D) $\frac{4I}{2n+1}$ 10. If initial velocity of projectile becomes doubled. The time of flight will become: (A) 4 times (B) Half (C) 2 times (D) 8 times (A) 4 times (B) 60" (C) 30" (D) 90" 12. $i \cdot (k \times I) = (B) I \cdot $
(A) 2 Em (B) $\sqrt{\frac{2E}{m}}$ (C) $\sqrt{\frac{1}{2}}$ Em (D) $\sqrt{2Em}$ 5. The frequency of waves produced in microwave oven is: (A) 1435 MHz (B) 2850 MHz (C) 2450 MHz (D) 4250 MHz 6. The increase in velocity of sound in air for 1"C rise in temperature is: (A) 61 cm/s (B) 0.61 cm/s (C) 61 m/s (D) 1.61 m/s 7. The ratio of velocity of disc to velocity of hoop is: (A) $\frac{2}{\sqrt{3}}$ (B) $\frac{4}{\sqrt{3}}$ (C) $\frac{2}{3}$ (D) $\frac{4}{3}$ 8. The wave length of nth mode of stationary waves in closed pipe is: (A) $\frac{2I}{n}$ (B) $\frac{4I}{2n-1}$ (C) $\frac{4I}{n}$ (D) $\frac{4I}{2n+1}$ 9. 1 rev / min is equal to: (C) $\frac{4I}{n}$ (D) $\frac{4I}{2n+1}$ 10. If initial velocity of projectile becomes doubled. The time of flight will become: (A) 4 times (B) Half (C) 2 times (D) 8 times (A) 4 times (B) 60" (C) 30" (D) 90" 12. $i \cdot (k \times I) = (B) I \cdot $
(A) 2 Em (B) $\sqrt{\frac{2E}{m}}$ (C) $\sqrt{\frac{1}{2}}$ Em (D) $\sqrt{2Em}$ 5. The frequency of waves produced in microwave oven is: (A) 1435 MHz (B) 2850 MHz (C) 2450 MHz (D) 4250 MHz 6. The increase in velocity of sound in air for 1"C rise in temperature is: (A) 61 cm/s (B) 0.61 cm/s (C) 61 m/s (D) 1.61 m/s 7. The ratio of velocity of disc to velocity of hoop is: (A) $\frac{2}{\sqrt{3}}$ (B) $\frac{4}{\sqrt{3}}$ (C) $\frac{2}{3}$ (D) $\frac{4}{3}$ 8. The wave length of nth mode of stationary waves in closed pipe is: (A) $\frac{2I}{n}$ (B) $\frac{4I}{2n-1}$ (C) $\frac{4I}{n}$ (D) $\frac{4I}{2n+1}$ 9. 1 rev / min is equal to: (C) $\frac{4I}{n}$ (D) $\frac{4I}{2n+1}$ 10. If initial velocity of projectile becomes doubled. The time of flight will become: (A) 4 times (B) Half (C) 2 times (D) 8 times (A) 4 times (B) 60" (C) 30" (D) 90" 12. $i \cdot (k \times I) = (B) I \cdot $
(A) 2 Em (B) $\sqrt{\frac{2E}{m}}$ (C) $\sqrt{\frac{1}{2}Em}$ (D) $\sqrt{2Em}$ 5. The frequency of waves produced in microwave oven is: (A) 1435 MHz (B) 2850 MHz (C) 2450 MHz (D) 4250 MHz 6. The increase in velocity of sound in air for 1 "C' rise in temperature is: (A) 61 cm/s (B) 0.61 cm/s (C) 61 m/s (D) 1.61 m/s 7. The ratio of velocity of disc to velocity of hoop is: $(A) \frac{2}{\sqrt{3}}$ (B) $\frac{4}{\sqrt{3}}$ (C) $\frac{2}{3}$ (D) $\frac{4}{3}$ 8. The wave length of nth mode of stationary waves in closed pipe is: (A) $\frac{2I}{n}$ (B) $\frac{4I}{2n-1}$ (C) $\frac{4I}{n}$ (D) $\frac{4I}{2n+1}$ 9. 1 rev / min is equal to: $(A) \frac{\pi}{6} rad / s$ (B) $\frac{\pi}{30} rad / s$ (C) $\frac{\pi}{15} rad / s$ (D) $2\pi rad / s$ 10. If initial velocity of projectile becomes doubled. The time of flight will become: (A) 4 times (B) Half (C) 2 times (D) 8 times (A) 45 " (B) 60 " (C) 30 " (D) 90 " 12. $i.(k \times i) =$ (A) $i.(k \times i) =$ (B) $i.(k \times i) = (B) i.(k \times i) = (B)$
(A) 1435 MHz (B) 2850 MHz (C) 2450 MHz (D) 4250 MHz 6. The increase in velocity of sound in air for 1"C' rise in temperature is: (A) 61 cm/s (B) 0.61 cm/s (C) 61 m/s (D) 1.61 m/s 7. The ratio of velocity of disc to velocity of hoop is: (A) $\frac{2}{\sqrt{3}}$ (B) $\frac{4}{\sqrt{3}}$ (C) $\frac{2}{3}$ (D) $\frac{4}{3}$ 8. The wave length of nth mode of stationary waves in closed pipe is: (A) $\frac{2l}{n}$ (B) $\frac{4l}{2n-1}$ (C) $\frac{4l}{n}$ (D) $\frac{4l}{2n+1}$ 9. 1 rev / min is equal to: (A) $\frac{\pi}{6}$ read / s (B) $\frac{\pi}{30}$ read / s (C) $\frac{\pi}{15}$ read / s (D) 2π read / s 10. If initial velocity of projectile becomes doubled. The time of flight will become: (A) 4 times (B) Half (C) 2 times (D) 8 times (A) 45" (B) 60" (C) 30" (D) 90" 12. $l_1(k \times l_1) = (B) l_1(k \times l_2) = (B) l_2(k \times l_3) = (B) l_3(k \times l_4) = (B) l_3(k \times $
(A) 1435 MHz (B) 2850 MHz (C) 2450 MHz (D) 4250 MHz 6. The increase in velocity of sound in air for 1"C' rise in temperature is: (A) 61 cm/s (B) 0.61 cm/s (C) 61 m/s (D) 1.61 m/s 7. The ratio of velocity of disc to velocity of hoop is: (A) $\frac{2}{\sqrt{3}}$ (B) $\frac{4}{\sqrt{3}}$ (C) $\frac{2}{3}$ (D) $\frac{4}{3}$ 8. The wave length of nth mode of stationary waves in closed pipe is: (A) $\frac{2l}{n}$ (B) $\frac{4l}{2n-1}$ (C) $\frac{4l}{n}$ (D) $\frac{4l}{2n+1}$ 9. 1 rev / min is equal to: (A) $\frac{\pi}{6}$ read / s (B) $\frac{\pi}{30}$ read / s (C) $\frac{\pi}{15}$ read / s (D) 2π read / s 10. If initial velocity of projectile becomes doubled. The time of flight will become: (A) 4 times (B) Half (C) 2 times (D) 8 times (A) 45" (B) 60" (C) 30" (D) 90" 12. $l_1(k \times l_1) = (B) l_1(k \times l_2) = (B) l_2(k \times l_3) = (B) l_3(k \times l_4) = (B) l_3(k \times $
(A) 1435 MHz (B) 2850 MHz (C) 2450 MHz (D) 4250 MHz 6. The increase in velocity of sound in air for 1"C' rise in temperature is: (A) 61 cm/s (B) 0.61 cm/s (C) 61 m/s (D) 1.61 m/s 7. The ratio of velocity of disc to velocity of hoop is: (A) $\frac{2}{\sqrt{3}}$ (B) $\frac{4}{\sqrt{3}}$ (C) $\frac{2}{3}$ (D) $\frac{4}{3}$ 8. The wave length of nth mode of stationary waves in closed pipe is: (A) $\frac{2l}{n}$ (B) $\frac{4l}{2n-1}$ (C) $\frac{4l}{n}$ (D) $\frac{4l}{2n+1}$ 9. 1 rev / min is equal to: (A) $\frac{\pi}{6}$ read / s (B) $\frac{\pi}{30}$ read / s (C) $\frac{\pi}{15}$ read / s (D) 2π read / s 10. If initial velocity of projectile becomes doubled. The time of flight will become: (A) 4 times (B) Half (C) 2 times (D) 8 times (A) 45" (B) 60" (C) 30" (D) 90" 12. $l_1(k \times l_1) = (B) l_1(k \times l_2) = (B) l_2(k \times l_3) = (B) l_3(k \times l_4) = (B) l_3(k \times $
(A) 61 cm/s (B) 0.61 cm/s (C) 61 m/s (D) 1.61 m/s 7. The ratio of velocity of disc to velocity of hoop is: (A) $\frac{2}{\sqrt{3}}$ (B) $\frac{4}{\sqrt{3}}$ (C) $\frac{2}{3}$ (D) $\frac{4}{3}$ 8. The wave length of nth mode of stationary waves in closed pipe is: (A) $\frac{2l}{n}$ (B) $\frac{4l}{2n-1}$ (C) $\frac{4l}{n}$ (D) $\frac{4l}{2n+1}$ 9. 1 rev / min is equal to: (A) $\frac{\pi}{6}$ rad / s (B) $\frac{\pi}{30}$ rad / s (C) $\frac{\pi}{15}$ rad / s (D) 2π rad / s 10. If initial velocity of projectile becomes doubled. The time of flight will become: (A) 4 times (B) Half (C) 2 times (D) 8 times (A) 45" (B) 60" (C) 30" (D) 90" 12. $\hat{l} \cdot (\hat{k} \times \hat{l}) = \frac{1}{3}$ (B) $\hat{l} \cdot (\hat{l} \times \hat{l}) = \frac{1}{3}$ (D) 0 13. If two non-zero vectors $\hat{l} \times \hat{l} = \frac{1}{3}$ (C) $\hat{l} \cdot \hat{l} = \frac{1}{3}$ (D) 0
(A) 61 cm/s (B) 0.61 cm/s (C) 61 m/s (D) 1.61 m/s 7. The ratio of velocity of disc to velocity of hoop is: (A) $\frac{2}{\sqrt{3}}$ (B) $\frac{4}{\sqrt{3}}$ (C) $\frac{2}{3}$ (D) $\frac{4}{3}$ 8. The wave length of nth mode of stationary waves in closed pipe is: (A) $\frac{2l}{n}$ (B) $\frac{4l}{2n-1}$ (C) $\frac{4l}{n}$ (D) $\frac{4l}{2n+1}$ 9. 1 rev / min is equal to: (A) $\frac{\pi}{6}$ rad / s (B) $\frac{\pi}{30}$ rad / s (C) $\frac{\pi}{15}$ rad / s (D) 2π rad / s 10. If initial velocity of projectile becomes doubled. The time of flight will become: (A) 4 times (B) Half (C) 2 times (D) 8 times (A) 45" (B) 60" (C) 30" (D) 90" 12. $\hat{l} \cdot (\hat{k} \times \hat{l}) = \frac{1}{3}$ (B) $\hat{l} \cdot (\hat{l} \times \hat{l}) = \frac{1}{3}$ (D) 0 13. If two non-zero vectors $\hat{l} \times \hat{l} = \frac{1}{3}$ (C) $\hat{l} \cdot \hat{l} = \frac{1}{3}$ (D) 0
7. The ratio of velocity of disc to velocity of hoop is: (A) $\frac{2}{\sqrt{3}}$ (B) $\frac{4}{\sqrt{3}}$ (C) $\frac{2}{3}$ (D) $\frac{4}{3}$ 8. The wave length of nth mode of stationary waves in closed pipe is: (A) $\frac{2l}{n}$ (B) $\frac{4l}{2n-1}$ (C) $\frac{4l}{n}$ (D) $\frac{4l}{2n+1}$ 9. 1 rev / min is equal to: (A) $\frac{\pi}{6}$ read / s (B) $\frac{\pi}{30}$ read / s (C) $\frac{\pi}{15}$ read / s (D) 2π rad / s 10. If Initial velocity of projectile becomes doubled. The time of flight will become: (A) 4 times (B) Half (C) 2 times (D) 8 times (A) 45" (B) 60" (C) 30" (D) 90" 12. $l \cdot (k \times l) = (A) 1$ (B) $l \cdot (B) 1 = (B) (C) 1 = (A) 1$ (D) 0 13. If two non-zero vectors $l \cdot (B) 1 = (B) (C) 1 = (B) 1$
8. The wave length of nth mode of stationary waves in closed pipe is: (A) $\frac{2l}{n}$ (B) $\frac{4l}{2n-1}$ (C) $\frac{4l}{n}$ (D) $\frac{4l}{2n+1}$ 9. 1 rev / min is equal to: (A) $\frac{\pi}{6}$ read / s (B) $\frac{\pi}{30}$ read / s (C) $\frac{\pi}{15}$ read / s (D) 2π read / s 10. If Initial velocity of projectile becomes doubled. The time of flight will become: (A) 4 times (B) Half (C) 2 times (D) 8 times (A) 45" (B) 60" (C) 30" (D) 90" 12. $i \cdot (k \times i) =$ (A) 1 (B) j (C) $i \cdot (k \times i) =$ (A) 1 (B) $j \cdot (k \times i) =$ (B) $i \cdot (k \times i) =$ (C) $i \cdot (k \times i) =$ (D) 0
8. The wave length of nth mode of stationary waves in closed pipe is: (A) $\frac{2l}{n}$ (B) $\frac{4l}{2n-1}$ (C) $\frac{4l}{n}$ (D) $\frac{4l}{2n+1}$ 9. 1 rev / min is equal to: (A) $\frac{\pi}{6}$ read / s (B) $\frac{\pi}{30}$ read / s (C) $\frac{\pi}{15}$ read / s (D) 2π read / s 10. If Initial velocity of projectile becomes doubled. The time of flight will become: (A) 4 times (B) Half (C) 2 times (D) 8 times (A) 45" (B) 60" (C) 30" (D) 90" 12. $i \cdot (k \times i) =$ (A) 1 (B) j (C) $i \cdot (k \times i) =$ (A) 1 (B) $j \cdot (k \times i) =$ (B) $i \cdot (k \times i) =$ (C) $i \cdot (k \times i) =$ (D) 0
9. 1 rev / min is equal to: (A) $\frac{2l}{n}$ (B) $\frac{4l}{2n-1}$ (C) $\frac{4l}{n}$ (D) $\frac{4l}{2n+1}$ 9. 1 rev / min is equal to: (A) $\frac{\pi}{6}$ rad / s (B) $\frac{\pi}{30}$ rad / s (C) $\frac{\pi}{15}$ rad / s (D) 2π rad / s 10. If initial velocity of projectile becomes doubled. The time of flight will become: (A) 4 times (B) Half (C) 2 times (D) 8 times 11. Height of projectile is maximum at an angle of projection of: (A) $45^{"}$ (B) $60^{"}$ (C) $30^{"}$ (D) $90^{"}$ 12. $l(k \times l) = (A) 1$ (B) $l(k \times l) = (A) 1$ (C) $l(k \times l) = (A) 1$ (D) 0
9. 1 rev / min is equal to: (A) $\frac{2l}{n}$ (B) $\frac{4l}{2n-1}$ (C) $\frac{4l}{n}$ (D) $\frac{4l}{2n+1}$ 9. 1 rev / min is equal to: (A) $\frac{\pi}{6}$ rad / s (B) $\frac{\pi}{30}$ rad / s (C) $\frac{\pi}{15}$ rad / s (D) 2π rad / s 10. If initial velocity of projectile becomes doubled. The time of flight will become: (A) 4 times (B) Half (C) 2 times (D) 8 times 11. Height of projectile is maximum at an angle of projection of: (A) $45^{"}$ (B) $60^{"}$ (C) $30^{"}$ (D) $90^{"}$ 12. $l(k \times l) = (A) 1$ (B) $l(k \times l) = (A) 1$ (C) $l(k \times l) = (A) 1$ (D) 0
9. 1 rev / min is equal to: $(C) \frac{4l}{n}$ 9. 1 rev / min is equal to: $(A) \frac{\pi}{6} rad / s$ (B) $\frac{\pi}{30} rad / s$ (C) $\frac{\pi}{15} rad / s$ (D) $2\pi rad / s$ 10. If initial velocity of projectile becomes doubled. The time of flight will become: (A) 4 times (B) Half (C) 2 times (D) 8 times (A) 45" (B) 60" (C) 30" (D) 90" 12. $i \cdot (k \times l) = (B) j$ (C) $i \cdot (B) = (B) j$ (D) 0 13. If two non-zero vectors $i \cdot k \cdot B$ are parallel to each other then: (A) $i \cdot B = (B) j$ (B) $i \cdot k \cdot B = (B) j$ (C) $i \cdot B = (B) j$
9. 1 rev / min is equal to: $(C) \frac{4l}{n}$ 9. 1 rev / min is equal to: $(A) \frac{\pi}{6} rad / s$ (B) $\frac{\pi}{30} rad / s$ (C) $\frac{\pi}{15} rad / s$ (D) $2\pi rad / s$ 10. If initial velocity of projectile becomes doubled. The time of flight will become: (A) 4 times (B) Half (C) 2 times (D) 8 times (A) 45" (B) 60" (C) 30" (D) 90" 12. $i \cdot (k \times l) = (B) j$ (C) $i \cdot (B) = (B) j$ (D) 0 13. If two non-zero vectors $i \cdot k \cdot B$ are parallel to each other then: (A) $i \cdot B = (B) j$ (B) $i \cdot k \cdot B = (B) j$ (C) $i \cdot B = (B) j$
10. If Initial velocity of projectile becomes doubled. The time of flight will become: (A) 4 times (B) Half (C) 2 times (D) 8 times (A) 45" (B) 60" (C) 30" (D) 90" 12. $\hat{i} \cdot (\hat{k} \times \hat{i}) = (B) \hat{j}$ (C) $\hat{i} \cdot (B) = (B) \hat{j}$ (D) 0 13. If two non-zero vectors $\hat{i} \otimes \hat{B}$ are parallel to each other then: (A) $\hat{i} \cdot (\hat{B} = 0)$ (B) $\hat{i} \times \hat{B} = AB$ (C) $\hat{i} \cdot (B) = AB$
10. If Initial velocity of projectile becomes doubled. The time of flight will become: (A) 4 times (B) Half (C) 2 times (D) 8 times (A) 45" (B) 60" (C) 30" (D) 90" 12. $\hat{i} \cdot (\hat{k} \times \hat{i}) = (B) \hat{j}$ (C) $\hat{i} \cdot (B) = (B) \hat{j}$ (D) 0 13. If two non-zero vectors $\hat{i} \otimes \hat{B}$ are parallel to each other then: (A) $\hat{i} \cdot (\hat{B} = 0)$ (B) $\hat{i} \times \hat{B} = AB$ (C) $\hat{i} \cdot (B) = AB$
10. If Initial velocity of projectile becomes doubled. The time of flight will become: (A) 4 times (B) Half (C) 2 times (D) 8 times (A) 45" (B) 60" (C) 30" (D) 90" 12. $\hat{i} \cdot (\hat{k} \times \hat{i}) = (B) \hat{j}$ (C) $\hat{i} \cdot (B) = (B) \hat{j}$ (D) 0 13. If two non-zero vectors $\hat{i} \otimes \hat{B}$ are parallel to each other then: (A) $\hat{i} \cdot (\hat{B} = 0)$ (B) $\hat{i} \times \hat{B} = AB$ (C) $\hat{i} \cdot (B) = AB$
10. If Initial velocity of projectile becomes doubled. The time of flight will become: (A) 4 times (B) Half (C) 2 times (D) 8 times (A) 45" (B) 60" (C) 30" (D) 90" 12. $\hat{i} \cdot (\hat{k} \times \hat{i}) = (B) \hat{j}$ (C) $\hat{i} \cdot (B) = (B) \hat{j}$ (D) 0 13. If two non-zero vectors $\hat{i} \otimes \hat{B}$ are parallel to each other then: (A) $\hat{i} \cdot (\hat{B} = 0)$ (B) $\hat{i} \times \hat{B} = AB$ (C) $\hat{i} \cdot (B) = AB$
10. If Initial velocity of projectile becomes doubled. The time of flight will become: (A) 4 times (B) Half (C) 2 times (D) 8 times (A) 45" (B) 60" (C) 30" (D) 90" 12. $\hat{i} \cdot (\hat{k} \times \hat{i}) = (B) \hat{j}$ (C) $\hat{i} \cdot (B) = (B) \hat{j}$ (D) 0 13. If two non-zero vectors $\hat{i} \otimes \hat{B}$ are parallel to each other then: (A) $\hat{i} \cdot (\hat{B} = 0)$ (B) $\hat{i} \times \hat{B} = AB$ (C) $\hat{i} \cdot (B) = AB$
11. Height of projectile is maximum at an angle of projection of: (A) $45''$ (B) $60''$ (C) $30''$ (D) $90''$ 12. $i \cdot (k \times i) =$ (A) 1 (B) j (C) (C) $j \cdot (k \times i) =$ (A) 1 (B) $j \cdot (k \times i) =$ (C) $j \cdot (k \times i) =$ (D) 0
11. Height of projectile is maximum at an angle of projection of: (A) $45''$ (B) $60''$ (C) $30''$ (D) $90''$ 12. $i \cdot (k \times i) =$ (A) 1 (B) j (C) (C) $j \cdot (k \times i) =$ (A) 1 (B) $j \cdot (k \times i) =$ (C) $j \cdot (k \times i) =$ (D) 0
12. $i \cdot (k \times i) =$ (A) 1 (B) j (C) 30 (D) 90 (D) 90 (D) 0 13. If two non-zero vectors $j \cdot k \cdot B$ are parallel to each other then: (A) $j \cdot B = 0$ (B) $j \cdot k \cdot B = j \cdot B$ (C) $j \cdot B = j \cdot B$
12. $i \cdot (k \times i) =$ (A) 1 (B) j (C) 30 (D) 90 (D) 90 (D) 0 13. If two non-zero vectors $j \cdot k \cdot B$ are parallel to each other then: (A) $j \cdot B = 0$ (B) $j \cdot k \cdot B = j \cdot B$ (C) $j \cdot B = j \cdot B$
(A) 1 (B) \hat{j} (C) \hat{j} (D) 0 13. If two non-zero vectors $\hat{j} \& \hat{B}$ are parallel to each other then: (A) $\hat{j} B = 0$ (B) $\hat{j} \times \hat{B} = AB$ (C) $\hat{j} B = AB$
13. If two non-zero vectors $A \otimes B$ are parallel to each other then: (A) $A \otimes B = 0$ (B) $A \otimes B = AB$ (C) $A \otimes B = AB$
13. If two non-zero vectors $A \otimes B$ are parallel to each other then: (A) $A \otimes B = 0$ (B) $A \otimes B = AB$ (C) $A \otimes B = AB$
(A) $A : B = 0$ (B) $A \times B = AB$ (C) $A : B = AB$
(A) $A(B=0)$ (B) $A\times B=AB$ (C) $AB=AB$
(B), (B)
14. The uncertainty in the Alma maintain (D) $A.B \equiv 1$
14. The uncertainty in the time period of a vibrating body is:
(A) least count × No. of vibrations (B) least count + No. of vibrations (C) least count ÷ No. of vibrations (D) least count
inger ben at billeige dablitisten ilden spille Hillicitatout
(A) work and power (B) momentum and impulse
(c) lorge and torque (D) momentum and force
16. Refractive index of water is:
(A) 1.5 (B) 1.33 (C) 1.0 (D) 1.2
17. The fringe spacing is the greatest for:
(A) Blue light (B) Yellow light (C) Green light (D) Red light

Time: 2:40 Hours

physics (New Scheme) session (2021)

SAHIWAL BOARD (Group - I, Class 11th)

Marks: 68 Subjective SECTION - I

Write short answers to any EIGHT parts.

 $F \times l$ Check the correctness of the relation v =where v is the speed of transverse wave

on a stretched string of tension F, length I and mass m.
Does a dimensional analysis give any information on constant of proportionality that may appear in an algebraic expression? Explain.

Add the following masses given in K_a upto appropriate precision. 2.189, 0.089, 11.8 and ijį.

The volume of sphere $V = 47.689 \, cm^3$ with 1.2% uncertainty. What is the correct range of iv. volume measurement?

Suppose the sides of closed polygon represent vector arranged head to tail. What is the ٧. sum of these vectors?

Prove that $A.B = A_x B_x + A_y B_y + A_z B_z$ VI.

If all the components of vectors A_1 and A_2 were reversed, would this alter $A_1 \times A_2$? vii.

Define Law of Conservation of linear momentum and write its mathematical form. Explain the difference between elastic and inelastic collisions. Explain how would a bouncing ball behave in each case? Give plausible reasons for the fact that K.E. is not conserved in most cases. Derive an expression for the time of flight of projectile. viii.

What happens to the velocities of two bodies after collision when alight body collides with a massive body at rest for elastic collision?

Two row boats moving parallel in the same direction are pulled towards each other. xii. Explain

A girl drops a cup from a certain height, which breaks into pieces. What energy changes are involved? 3. i.

Show that $1kWh = 3.6 \times 10^{\circ} J$ ij,

What do you mean by variable force? Give its two examples. iii.

Show that $v = r\omega$ iv.

vi.

What is meant by moment of inertia? Explain its significance.

When mud flies off the tyre of a moving bicycle, in what direction does it fly? Explain.

What is meant by phase angle? Does it define angle between maximum displacement and

viii.

ix.

Define resonance, write one advantage and one disadvantage of resonance.

Differentiae between free and forced oscillations.
Is it possible for two indentical waves travelling in the same direction along a string to give X. rise to a stationary wave?

How temperature and density of the medium effect the speed of sound? What happens when a jet plane like Concorde flies faster than the speed of sound? xii.

Write short answer to any SIX parts.

How is the distance between interference fringes affected by separation between the slits i. of Young's experiment? Can fringes disappear

iii.

How would you manage to get more orders of spectra using diffraction grating? What are Newton's rings? How they are formed? Explain the difference between angular magnification and resolving power of an optical iv,

What is meant by least distance of distinct vision?
Why does the pressure of a gas in a car tyre increases when it is driven through some vi. distance:

vii.

What is meant by reversible process? Give its example. Write down the postulates of kinetic theory of gases. viii. Specific heat of a gas at constant pressure greater than specific heat at constant volume. Why?

Attempt any THREE questions. Each question carries 08 Marks.

5.(a) Describe the method of addition of vectors by rectangular components.

(b) A truck weighing 2500 Kg and moving with a velocity of $21ms^{-1}$ collides with stationary car weighing 100 kg. The truck and the car move together after the impact. Calculate their common velocity.

6.(a) Define Absolute Potential Energy. Derive relation for absolure P.E of body of mass "m" at distance "r" from the center of earth.

(b) Find the temperature at which the velocity of sound in air is two times its velocity at 10°C.

7. (a) State and prove Bernoulli's equation.
(b) What is the least speed at which an aeroplane can execute a vertical loop of 1.0 km radius so that there will be no tendency for the pilot to fall down at the highest point.

8. (a) State first law of thermodynamics and explain: (i) Isothermal Process (ii) Adiabatic Process
(b) A simple pendulum is 50cm long. What will be its frequency of vibration at a place where

9. (a) Calculate the speed of light by Michelson's method.
(b) Yellow sodium light of wavelength 589 nm, emitted by a single source passes through two narrow slits 1.0 mm apart. The interference pattern is observed on a screen 225 cm away. How far apart are two adjacent bright fringes?

7 7 7	- COAPD	
Physics (New Scheme) (Group – I-	-tive	Time: 20 Minutes Marks: 17
Note: You have four shales for each of	hiective type question	as A, B, C and D. Th.
choice which you think is correct; fill tha	t circle in front of tha	t question numbr
marker or pen. Cutting of filling two or	more circles will resu	It in zero mark in 4
question.	More Circles will resu	in that
	. In alaead	ing ic
1. The wave length of nth mode of station	nary waves in closed	
(A) $\frac{2l}{n}$ (B) $\frac{4l}{2n-1}$ 2. The ratio of velocity of disc to velocity	$(c) \frac{4l}{l}$	(D) $\frac{4l}{2n+1}$
$n (0) \overline{2n-1}$	$\binom{C}{n}$	2n+1
2. The ratio of velocity of disc to velocity	of hoop is:	
(A) $\frac{2}{\sqrt{3}}$ (B) $\frac{4}{\sqrt{3}}$	2	4
(A) $\sqrt{3}$ (B) $-\sqrt{5}$	(c) $\frac{2}{3}$	(D) $\frac{4}{3}$
3. 1 rev / min is equal to:	3	
Ticy/ min is equal to:	and the second of	
(A) $\frac{\pi}{6} rad/s$ (B) $\frac{\pi}{30} rad/s$	(C) $\frac{\pi}{15}$ rad / s	(D) $2\pi rad/s$
"" VEIDULY OF PROJECTILE Recome	doubled. The time of	flight will be
(A) 4 times (B) Half	(C) 2 times	(D) 9 Aims Decome:
5. If two non zero vectors $\overrightarrow{A} \times \overrightarrow{B}$ are para	(C) 2 times	(D) 8 times
(A) A D	illel to each other then	
(A) $\overrightarrow{A} \cdot \overrightarrow{B} = 0$ (B) $ \overrightarrow{A} \cdot \overrightarrow{B} = AB$ (C) $ \overrightarrow{A} $	$\vec{B} = AB$ (D) \vec{A}	$\vec{R} = 1$
$6. i.(\hat{k} \times \hat{i}) =$, , , , , , , , , , , , , , , , , , , ,	
(A) 1 (B) ;		
(D) /	(C) i	(D) 0
7. Height of projectile is maximum at an a	ngle of projection of	A CONTRACTOR
		121 200
8. The uncertainty in the time period of (A) least count x No. of vibrations	1 1 1	(D) 90°
(A) least count x No. of vibrations (C) least count ÷ No. of vibrations 9. Which pair of physical quantities have	(B) least count is:	
(C) least count ÷ No. of vibrations	(D) least count No. of	vibrations
9. Which pair of physical quantities have (A) work and power	Same dimensions 2	vibrations
(A) work and power	(B) momentum	
(C) force and torque	(B) momentum and im	pulse
10. The fringe spacing is the greatest for:	(D) momentum and for	ce
(A) Dive light (B) Yellow light	(C) Groom that	
11. Redfractive index of water is:	(C) Green light	(D) Red light
(A) 1.5 (B) 1.32	(0)10	
12. The term "phg" in Bernoulli's equation	(C) 1.0	(D) 1.2
12. The term "phg" in Bernoulli's equation (A) work (B) energy 13. An ideal gas performs 101 of work	(C) neesame units as	
13. An ideal gas performs 10J of work whi internal energy is: (A) 10 J	(c) pressure	(D) flow rate
internal energy is:	expanding adiabation	ally. The change in its
		, change in its
14. Average translational K.E. of a gas mo	(C) 100 J	(D) -200 J
(A) $\frac{3}{2}KT$ (B) $\frac{1}{2}KT$	piecule is:	(-) 200]
2^{KI}	(C) = KT	(D) 75m
15. The K.E of an object of mass "m" is "E	" its man	(D) <i>KT</i>
(a)	, its momentum will b	e:
(A) 2 EM (B) $\sqrt{\frac{2E}{m}}$	100 1	
\sqrt{m}	$(C)\sqrt{2}Em$	(D) $\sqrt{2mE}$
16. The frequency of waves produced in mi	Crowave over !-	1-1 VAINE
(A) 1430 MHZ (B) 2850 MHz	(C) 2450 MU-	Ja.
17. The increase in valority of annual in a	(C) 2430 IVITZ	(D) 4250 MHz
(A) 61 cm/s (B) 0.61 cm/s	for I C in termperat	ure is:
(A) 61 cm/s (B) 0.61 cm/s	(C) 61 m/s	(D) 1.61 m/s
		. 1 -101 III/2

SAHIWAL BOARD

physics (New Scheme) Session (2021)

(Group - I, Class 11th) Subjective SECTION - I

Time: 2:40 Hours Marks: 68

Write short answers to any EIGHT parts.

Check the correctness of the relation v =where v is the speed of transverse 1.

wve on a stretched string of tension F, length l and mass m. Does a dimenstional analysis give any information on constant of proportionality that may appear in an algebraic expression? Explain.

Add the following masses given in Kg upto appropriate precision. 2.189, 0.089, 11.8 ii.

jii. and 5.32.

The volume of sphere V=47.689 cm3 with 1.2% uncertainty. What is the correct range iv. of volume measurement?

Suppose the sides of closed polygon represent vector arranged head to ttail. What is V. the sum of these vectors?

Prove that $A.B = A_x B_x + A_y B_y + A_z B_z$ vi.

If all the components of vectors A_1 and A_2 were reversed, how would this alter vii.

viii. ix.

xi.

 $A_1 \times A_2$.

Define Law of Conservation of linear momentum and write its mathematical form. Explain the difference between elastic and inelastic collisions. Explain how would a bouncing ball behave in each case?

Derive an expression for the time of flight of projectile.

What happens to the velocities of two bodies after collision when a light body collides with a massive body at rest for elastic collision?

Two row boats moving parallel in the same direction are pulled towards each other. Explain.

Write short answer to any EIGHT parts.

A girl drops a cup from a certain height, which breaks into pieces. What energy changes are involved? xii. 3.

Show that $1kWh = 3.6 \times 10^6 J$. ü.

What do you mean by variable force? Give its two examples. Show that $v=r\omega$. iii.

iv.

What is meant by moment of inertia? Explain its significance.
When mud flies off the tyre of a moving bicycle, in what direction does it fly? Explain.
What is meant by phase angle? Does it define angle etween maximum displacement vi. vii.

viii.

Define resonance, write one advantage and one disadvantage of resonance.

Differentiate between free and forced oscillations.

Is it possible for two indentical waves travelling in the same direction along a string to ix.

xii.

4. i.

give irse to a stationary wave?
How temperature and density of the medium effect the speed of sound?
What happens when a jet plane like Concorde flies faster than the speed of sound?
Write short answer to any SIX parts.
How is the distance between interference fringes affected by separation between the slits of Young's experiment? Can fringes disappear?
How would you manage to get more orders of spectra using diffraction grating?
What are Newton's rings? How they are formed?
Explain the difference between angular magnification and resolving power of an optical instrument.

iii. instrument. What is meant by least distance of distinct vision?

Why does the pressure of a gas in a car tyre increases when it is driven through some vi. viì.

What is meant by reversible process? Give its example.
Write down the postlates of kinetic theory of gases.
Write down the postlates of kinetic theory of gases.
Specific heat of a gas at constant pressure greater than specific heat at constant volume. Why?

SECTION - II viii.

Attempt any THREE questions. Each question carries 08 Marks.

5.(a) Describe the method of addition of vectors by rectangular components.

A truck weighing 2500 Kg and moving with a velocity of $21 ms^{-1}$ collides with stationary car weighing 1000 kg. The truck and the car move together after the impact. Calculate their common velocity.

Define Absolute Potential Energy. Derive relation for absolute P.E of body of mass "m" at distance "r" from the center of earth.

Find the temperature at which the velocity of sound is air is two times its velocity at 10 % of the temperature at which the velocity of sound is air is two times its velocity at 10 % of the temperature at which the velocity of sound is air is two times its velocity at 10 % of the temperature at which the velocity of sound is air is two times its velocity at 10 % of the temperature at which the velocity of sound is air is two times its velocity at 10 % of the temperature at which the velocity of sound is air is two times its velocity of the temperature.

(b) Find the tempertare at which the velocity of sound in air is two times its velocity at $10 \, ^{\circ}C$

7. (a) State and prove Bernoulli's equation.
(b) What is the least speed at which an aeroplane can execute a vertical loop of 1.0 km radius so that there will be no tendency for the pilot to fall down tat the highest point. radius so that there will be no tendency for the pilot to fall down tat the highest point.
8. (a) State first law of thermodynamics and explain. (i) Isothermal Process (ii) Adiabatic Process.
(b) A simple pendulum is 50 cm long. What will be its frequency of vibration at a place where g = 9.8ms⁻²?
9. (a) Calculate the speed of light by Michelson's method.

wnere g = 9.8ms
(a) Calculate the speed of light by Michelson's method.
(b) Yellow sodium light of wavelength 589 nm, emitted by a single source passes through two narrow slits 1.0 mm apart. The interference pattern is observed on a screen 225 cm away. How far apart are two adjacent bright fringes?

	POARD	
Physics (New Scheme) (Group – I–C	BOARD Class 11 th)	Time: 20 Minutes Marks: 17
Note: You have four choices for each obj	estive type question	as A, B, C and D To
choice which you think is correct; fill that	ective type question	question numbr with
marker or pen. Cutting of filling two or m	circle in front or each	in zero mark in al
question.	lore circles will result	that
question.		
1. The dimensions of $\sqrt{\frac{m}{k}}$ is same as that	of:	
(A) Momentum (B) Time	(C) Acceleration	(D) Force
2. The % uncertainty in the measurement	ofa sphere is 2 %. The	% uncertainty in the
volume of sphere is:	47.00 Paring 1.	
(A) 6 % (B) 2 %	(C) 4 %	(D) 8 %
3. If $ A \times B = A \cdot B $ then angle between vec	tors \overline{A} and \overline{B} is:	
(A) 60" (B) 90"	(C) 45" (D) 30"	
4. Projection of A on B is:		
/ 4 \ 7	$(C)\vec{B}\cdot\hat{A}$	(D) \vec{A} . \hat{B}
5. The horizontal acceleration of projectile	(C) D . A	(D) A . B
(A) Equal to "g" (B) Positive	(C) Negative	(D) Zero
o. III a typical rocket, the fuel burns at the	rate of	
(B) 1000 kg/s - (B) 1000 kg/s	(C) 10 000 kg/s	(D) 40,000 kg/s
7. The rotational K.E of solid sphere is:	(C) 10,000 KB/3	(D) 40,000 kg/s
	2	1 6
$(A)\frac{2}{5}mr^2\omega^2 \qquad (B)\frac{1}{5}mr^2\omega^2$	$(C) \frac{2}{3} mr^2 \omega^2$	(D) $\frac{1}{5}l\omega^2$
8. The ratio of orbital velocity to the esca	ne velocity is:	5 0
	pe velocity is:	8
(A) $\sqrt{\frac{1}{2}}$ (B) $\frac{1}{2}$	(C) 1	(D) √2
1 -		W 1 12
9. The wavelength of waves produced in	microwave oven is: 🏑	
(A) 12 cm (B) 20 cm	(C) 24 cm	(D) 10 cm
10. The speed of sound in air at 30" is appr	oximately equal to:	
(A) $332 m/s$ (B) $350 m/s$	(C) 340 m/s	(D) $335 m/s$
11. The distance between 1" node and 4"	antinode is:	
$(A)\frac{5}{4}\lambda \qquad (B)\frac{13}{4}\lambda$	(c) 7,	- 11
4	(c) $\frac{7}{4}\lambda$	(D) $\frac{11}{4}\lambda$
12. Escape velocity of object depends upon		4
(A) Mass of object (B) Size of object	(C)	-
13 A carnot engine operating between the	(C) Shape of object	(D) Radius of planet
13. A carnot engine operating between the (A) 40k and 20k (B) 60k and 40k	(C) 80k and Col	atest efficiency:
14. Which one is true for isothermal proce	(C) 80k and 60k	(D) 100k and 80k
(A) $Q = 0$ (B) $Q = W$		
	(0),, -0	(D) $Q = \mu \Delta$
15. The term $\frac{1}{2}\rho v^2$ in equation represents		
(A) K.E of fluid (B) Pressure energy	(C) N.c per unit volum	e(D) P.E of fluid
16. The phase difference between two point	ts on the same wave fro	nt is:
$(A)\frac{\pi}{2}$ $(B)\pi$	$(C)\frac{\pi}{\Delta}$	(D) 0
	7	(5)0
17. Final image formed by compound micr	oscope is:	
(A) Real; Inverted; Magnified	(B) Virtual; Erect; Mag	nified
(C) Real; Erect; Diminished	(D) Virtual; Inverted;	Diminished .

Marks: 68

Time: 2:40 Hours

physics (New Scheme) Session (2021)

<u>MULTAN BOARD</u>

(Group - I, Class 11th) Subjective

SECTION - I

Write short answers to any EIGHT parts.

Show that the expression $v_f = v_i + at$ is dimensionally correct where v_i is the velocity at 1. $t=0,\ a$ is the acceleration and v, is the velocity at time t.

Write the dimension of (i) Pressure Define Precision and Accuracy. (ii) Density

iil. Find the dimensions and hence the S.I units of coefficient of viscosity η in relation of stokes law for the drag force F for a spherical object of radius r moving with velocity v given as $F = 6\pi \eta r v$

Define position vector and write its general formula in three dimension. V.

Prove that $A \cdot B = B \cdot A$ vi.

If all the components of vectors $\overline{A_1}$ and $\overline{A_2}$ were reversed, would this alter $\overline{A_1} \times \overline{A_2}$? Water flows out from a pipe at 3kgs^{-1} and its velocity change from 5ms^{-1} to zero on striking the well, then find the force due to flow of this water. vii. vill.

Derive the formula for the vertical distance covered by the projectile when it is thrown from a ix. certain height h.

Define the range of projectile and show that the range of projectile is maximum when projectile X.

- is thrown at an angle of 45° with the horizontal. xi.
- A 100 g golf ball is moving to the right with a velocity of $20ms^{-1}$. It makes a head on collision with a 8kg steel ball initially at rest. Compute velocities of the balls after collision. Define Torricelli's theorem and write the formula for the speed of efflux. xii.

Write short answer to any EIGHT parts.

Prove that $P = F \cdot V$

Calculate the work done in kilo joules in lifting a mass of 10kg (at a steady velocity) through ii. a vertical height of 10m.

iii. Differentiate between conservative and non conservative force.

Show that $1 \text{ rad} = 57.3^{\circ}$ iv.

vi.

Why does a diver change his body position before and after diving in the pool?
What do you mean by orbital velocity? Write down its formula.
What happens to the period of simple pendulum if its length is doubled? What happens if the suspended mass is doubled?
Why coldinar are advised to break their steps when marching on bridge? vii.

Why soldiers are advised to break their steps when marching on bridge? What is driven harmonic oscillator? Give example.

Define beats and explain with one example. viii.

ix.

Explain why sound travel faster in warm air than in cold air. xi.

Speed of sound in air at $0^{\circ}C$ is $332ms^{-1}$. Find its speed at $20^{\circ}C$. Write short answer to any SIX parts. xii.

4.

Under what conditions, two or more sources of light behave as coherent sources? Could you obtain Newton's rings with transmitted light if yes, would the pattern be different from that obtained with reflected light? ii.

iii.

What is meant by fringe spacing? What do you understand by linear magnification and angular magnification? iv.

What is the length of the telescope in state of normal adjustment?
Why is the average velocity of the molecules in a gas zero but the average of square of ٧i. velocities is not zero?

What is meant by reversible process? Give its example.

Find the average speed of oxygen molecule in the air at STP. viii. Why does the pressure of gas in a car tyre increase when it is driven through some distance? SECTION - II

Attempt any THREE questions. Each question carries 08 Marks.

5.(a) Define and explain vector product of two vectors. Also write down the four characteristics of vector product of two vectors.

(b) A ball thrown horizontally from a height of 10m with velocity of 21 ms-1. How far off it hit

the ground? 6.(a) What is Gravitational field is a conservative field.

(b) The frequency of the note emitted by a stretched string is 300 Hz. What will be the frequency of this note when the tension is increased by one-third without changing the length of the wire

7. (a) Define centripetal force. Derive its relation. (b) A tiny water droplet of radius 0.01 cm descends through air from high building. Calculate its terminal velocity. Given that η for air is $19 \times 10^{-6} \ kgm^{-1} s^{-1}$ and density of water is

 $19 \times 10^{-6} \, kgm^{-1} s^{-1}$. 8. (a) Define and explain the phenomenon of resonance with an example.

(b) A mechanical engineer develops an engine working between 327° C and 27° C and claims to have an efficiency of 52%. Does he claim correctly? Explain.

9. (a) What is diffraction grating? Calculate the wavelength of light used by diffraction grating.

(b) A telescope is made of an objective of focal length 20 cm and an eye piece of 5.0cm. Both are convex lenses. Fine the angular magnification.

Physics (New Scheme)	D.G KHAN BOARD (Group – I-Class 11 th)	Time: 20 Minutes
263210U (SOST)	Objective	Marks: 17
Note: You have four choice	es for each objective type que	estion as A, B, C and D. The
choice which you think is c	correct: fill that circle in front (of that question numbr with
marker or pen. Cutting of	filling two or more circles will	result in zero mark in that
question.	To the	
1. The dimensions of volun	ne flow rate of a fluid are:	There was a directly
(A) $\lfloor LT^{-1} \rfloor$ (B) $\lfloor L^2 \rfloor$	$T^{-\frac{1}{2}}$ (c) $L^{1}T^{-1}$	(D) $\left[L^{3}T^{-2}\right]$
(A) 8 min 20 s (B) 1 m	ravel from sun to earth is nin 20 s (C) 5 h 20 s	(D) 4 h 20 s
3. At what angle Dot produ	act and Cross product have the	same magnitude
(A) 0" (B) 45"	"· (C) 30" · · · · (D) 60"
 Magnitude of cross prod 	luct of two perpendicular vecto	rs is
(A) AB	\hat{n} (C) 0	(D) AB
5. A 1500 kg has its velocity	y reduced from 20 ms to 15 ms	s ⁻¹ in 3.0 sec. How large was
the retarding force?		
(A) 500 N (B) 250	00 N (C) 1500 N	(D) 1000 N
6. When a massive body of	mass m, collides with lighter stat	ionary body of mass m, the
velocity of massive body af	fter collision will be	
(A) $V_1' = 2V_1$ (B) $V_2' =$	$=V_1$ (c) $V_1' = V_1$	(D) $V' = 2V$
7. Which one of the followin	g is conservative force	The state of the s
(A) Electric force (B) Air	resistance (C) Frictional for	ce (D) Tonsion in string
bottom will be	an inclined plane having heigh	t of 10m. Its velocity at the
(A) 4.91 m/\sec (B) 9.89	0 m/sec (C) 28.31 m/sec	(D) 21 21 31 31 4 1
107 1 W T 1118 1031 2 1	D H3 T = V	· · · · · · · · · · · · · · · · · · ·
the state of a period	WILL OF TELLETIN (= 1/1) and displace	
(0) 2.23 m/3 (DIU.1)	9 m/s ((10 60 / == /r	110 40
11. If radius of droplet become	nes half then its terminal veloci	ty will be
(A) One fourth (B) Four	r times (C) Half	
12. When both ends of organ	ning are area of	(D) Double
nth harmonic is given by	pipe are open then the frequen	cy of stationary waves of
nu numbrile is given by	" - Lose - mg afford to all took	
(A) $fn = \frac{R^2}{4R^2}$ (B) $fn = \frac{R^2}{4R^2}$	$=\frac{v}{c}$ (C) fn $=\frac{nv}{c}$	(D) 2 2v
12 The value of constant	$2n\ell$	(D) in $\equiv \frac{1}{p(t)}$ to $ y = \frac{1}{p(t)}$
13. The value of constant γ for	$= \frac{v}{2n\ell}$ (C) fn = $\frac{nv}{2\ell}$ or the mono-atomic gas is	All your line
(A) 1.67 (B) 1.40	(C) 1.29	(D) 2.45
14. In youngs double slit expe	eriment the position of bright for $\frac{mLd}{\lambda}$ (C) $y = \frac{m\lambda}{Ld}$ at taken by the rotational mirror	rings is given by
$(A) v = \frac{m\lambda d}{a} \qquad (B) v = \frac{h}{a}$	$\frac{nLd}{m\lambda}$ $(c) \stackrel{\sim}{\sim} m\lambda$	(a)
L $(S_{I,J} - L)$	λ $\frac{1}{1}d$	(D) $y = \frac{m \lambda L}{m \lambda L}$
15. In Michelson method time	taken by the rotational mirro	r to rotate al
angle $\frac{2\pi}{8}$ (If f is the frequen	cy of rotation) is	in the second of the second
1	Thirtist pan as in	The wife control of the set
$(A) \frac{1}{A}$ $(B) \frac{1}{A}$	$(C) \frac{1}{C}$ $(D) \frac{1}{C}$	the contraction of A let
4f $2f$	eal engine in (C) 1940	aver other land grant of
16. Sadi carnot described an ide	eal engine in	The street
(A) 1640 (B) 1740	(C) 1940	(D) 1840
Trick system does doo to wo	rk and at the same time intern	al energy increases by 320
o, the heat supplied is		
(A) 200 J (B) 600 V	(C) 280 J	(D) 920 J

```
physics (New Scheme)
session (2021)
```

D.G KHAN BOARD (Group - I, Class 11th) Subjective

Time: 2:40 Hours Marks: 68

SECTION - I Write short answers to any EIGHT parts.

Show that the expression Vf = Vi + at is dimensionally correct where Vi is the velocity at t = 0, a is the acceleration and Vf is the velocity at time t.

What are the rules for assessment of uncertainty in case of a power factor?

Three students measured the length of a needle with a scale on which minimum divisions is 1 mm and recorded as (i) 0.2145 (ii) 0.14 m. which record is correct and why?

Write the dimensions of (i) Force (ii) Velocity

N.

The vector sum of three vectors give a zero resultant. What can be the orientation of the vectors?

V. Define torque. Write its unit

What is the unit vector in the direction on the vector $\vec{A} = 4\vec{i} + 3\vec{j}$ vii.

Does s moving object have impulse? viii.

Explain the difference between elastic and inelastic collision. ir.

What is the effect on the speed of a fighter plane chasing another when it open fire? What happen to the speed of pursued plane when it returns the fire?

xi.

Define an Isolated system. Give example. Two row boats moving parallel in the same direction are pulled towards each other. Explain XII.

Write short answer to any EIGHT parts. 3.

Explain what do you understand the work done by Gravitational field? i. An object has one joule of potential energy. Explain what does its mean?

When a rocket re-enters the atmosphere, its nose cone become very hot. Where does heat īī. energy come from?

Define the terms (a) Rotational Kinetic Energy (b) Orbital velocity iv.

State the direction of the following vectors in simple situation; angular velocity and angular

Why does a diver change his body positions before and after diving in the pool?

What' should be the length of a simple pendulum whose period is 1.0 second at a place vii. where $g = 9.8 \, ms^{-2}$?

Under what conditions does the addition of two simple harmonic motions produce a result, viii. which is also simple harmonic?

Describe two common phenomena in which resonance plays important role ix.

What features do transverse periodic waves have common with longitudinal periodic wves?

What is the effect of density on the speed of sound? Explain. xi.

What happen when a jet plane like concorde flies faster than the speed of sound? xii.

Write short answer to any SIX parts. 4.

Can visible light produce interference fringes? Explain

Explain whether the Young's experiment is an experiment for studying interference of ii. diffraction effect of light

Why the centre of the Newton's ring is dark? III.

How convex lens is used as a magnifier? What limits the magnification of an potical iv.

If a person was looking through a telescope at the full moon, how would the appearance of the ٧. moon be changed by covering half of the objective lens? Specific heat of a gas at constant pressure is greater than specific heat at constant volume. Why? vi.

vii.

What is meant by irreversible process? Give its example Calculate the work done during isothermal process? viii. Draw PV-diagram which show four steps of Carnot engine. SECTION - II

Attempt any THREE questions. Each question carries 08 Marks.

5.(a) What is projectile motion? Derive expression for its height and range?

(b) Find the projection of $\vec{A} = 2\hat{i} + 8\hat{j} + \hat{k}$ in the direction of the vector $\vec{B} = 3\hat{i} + 4\hat{j} + 12\hat{k}$

6.(a) What is the effect of temperature on speed of sound? Show that $v_i = v_0 + 0.61t$

(b) How large a force is required to accelerate an electron $(m = 9.1 \times 10^{-31} \, kg)$ from rest a speed of $2 \times 10^7 ms^{-1}$ through a distance of 10cm.

7. (a) Derive Bernoulli's equation for a non viscous, incompressible fluid which flows in a steady state manner

(b) A 1000 kg car traveling with a speed of $144km h^{-1}$ rounds a curve of radius 100 m. Find the necessary centripetal force.

8. (a) Prove Law of Conservation of energy in SHM in mass spring system (b) Estimate the average speed of Nitrogen molecules in air under standard conditions of

pressure and temperature. 9. (a) Define diffraction of light. Describe it through a diffraction grating to derive diffraction equation to determine wavelength of light. (b) An astronomical telescope having magnifying power 5.0 consists of two thin lenesss 24 cm

apart. Find focal lengths of the lenses.1q.

			POARD	200011
DL.	*	RAWALPI	NDI BOARD	Time: 20 Minutes
Phy	sics (New Scheme)			Marks: 17
Sess	sion (2021)	Object	ive type question	as A, B, C and D, The
Not	e: You have four choice	es for each ob	sircle in front of tha	it question mark in the
mar	ion (2021) e: You have four choice ce which you think is o ker or pen. Cutting of	correct; fill that	nore circles will resu	ון ווו צבוס וויבוא זוו נוומן
aue	e: You have four choice which you think is concernation of stion.	filling two or in	hanna du	of 20 ms ⁻¹ , the
1.	stion. If 20 waves pass through	h medium in on	e second with speed	
	wavelength is:	200		(D) 1 m
	(A) 20 m (B) 2 n	n in	(C) 400 m	
2.	Distance between two	onsective node	s is:	λ
			$(C)\frac{\lambda}{2}$	(D) $\frac{\lambda}{4}$
	(A) λ (B) 2/	4	2	Frankship A
		3 <i>R</i>	denter in 5 to 1.55 - 45	the standard to be
3.	For mono atomic gas $C_{\rm v}$ =	therefore no	des is:	Leader or miles !
	2/ /2/ 5	/ t	(c) $\frac{4}{15}$ (D) $\frac{15}{2}$	A
	(A) $\frac{3}{5}$ (B) $\frac{5}{7}$	J	(9//15	
4.	Average velocity of mol	ecnies in Bas is		(D) infinity
	(A) Zero (B) Po	sitive	(C) negative	all in least that (if the
5.	Gravity performs zero w	ork when body	(B) Horizontally	and the same sales
	(A) Vertically		(D) at 60" with horizon	ntal v
	(C) at 60" with vertical	f. ft. dad in	(D) at 00 with horizon	The state of the s
6.	The SI unit of rate of flo	w of fluid is:	(C) m //e ²	(D) kg m/s
	The SI unit of rate of flor (A) m/s (B) m^3	/ S	itude V is proportion	al to:
7.	Energy of particle execut	IUB 2011/1 of ambi	ituac sto is propor	
	(A) X_a^2 (B) X_a^2	2	(C) X_0 (D) X	
		The same of the same		THE WILLIAM JOHN A
	Formula for Fringe space			
, ·	$(A)\frac{\lambda d}{l} \qquad (B)\frac{\lambda l}{d}$		(c) $\frac{Ld}{\lambda}$	(D) - 116 M
	1.			& d and the
9.	Length of astronomical t	telescope for no	rmal adjustment is:	tem a tv 1861 jali.
	(A) f _o +f _e . (B) f _o -	f.	$(C) \frac{1}{-} - \frac{1}{-}$	(D) $\frac{1}{4} + \frac{1}{4}$
	(A) 1011e.	property of	$(C)\frac{1}{f_n} - \frac{1}{f_c}$	f_{μ} f_{c} son f_{c}
10.	Least count of meter roo			
	(A) 0.01 cm (B) 0.0	001 cm	(C) 0.1 cm	(D) 1 cm
11.	Which one of the follow	ing is correct?	and and arrange and its	the food marks.
	(A) $m = E/C_2$ (B) $m =$	$=\frac{C^2}{r}$	(C) $m = C^2 E$	(D) $m = CE$
	1			and they are the first
12.	Which of the following is	s perpendicular	to 41 = 5j:	tementi
٠.	(A) $4\hat{i} + 3\hat{j}$ (B) $6\hat{i}$		(C) $7k + \hat{i}$	(D) $3\hat{i} + 4\hat{j}$
1.3	I DI QUE IS I OLGUDII al alla	IUEUUS UI.		
	(A) Momentum (B) For	rce	(C) Weight	(D) Axis of rotation
14.	A ball is dropped from a	height of 4.2 m	eters. To what heigh	t it will rise if there
	loss after rebounding:	. 0		30 161 10 10
		m S	(C) 12.6 m	(D) 2.4 m
15.	Total time for which the	projectile rema	m m git is called.	The second of th
	(A) Time of projectile	0	(B) Time of flight	Severe 44 (00) - 1 d
	(C) Time period		(D) Time constant	
	Dimensions of angular acc	_	(a) [m 2]	The same sending
		2]		(D) $\begin{bmatrix} I T^{-2} \end{bmatrix}$
17. \	When a body moves in a	circular path it	's linear velocity:	(D) $\left[LT^{-2}\right]$
. (A) remains constant	55	(B) becomes zero	n 65
1	C) changes		(D) increases	THE SECTION OF CALL

ji.

RAWALPINDI BOARD

physics (New Scheme) Session (2021)

(Class 11th) Subjective SECTION - I Time: 2:40 Hours Marks: 68

Write short answers to any EIGHT parts.

Write the dimensions of (a) Pressure

(a) Pressure (b) Density (a) Unit vector (b) Position vector

Calculate the maximum height of the projectile. jii. why fog droplets appear to be suspended in air? iv.

What are the dimesions and units of coefficient of viscosity " η " in the formula $F = 6\pi\mu rv$ ٧.

How the uncertainty in the average value of many measurements is assessed? vi.

Which of the given equation is correct? $f = v\lambda$ or $f = \frac{v}{\lambda}$. ·vii.

Show that he sum and difference of two perpendicular vectors of equal lengths are also viii. perpendicular and of the same length.

State and illustrate the "Right Hand Rule" of vector product. ix.

Find the angle of projection of a projectile for which its maximum height horizontal range are equal. X. At what point or points in its path does a projectile have its minimum speed, its maximum speed? xi. Define isolated system. What is the importance of an iso lated system in the conservation of xii.

linear momentum?

Write short answer to any EIGHT parts. 3.

Prove that P = F.V. j,

Derive the relation of work energy principle ii.

Define Beats and Stationary waves. iii.

Prove that $a_r = r \propto$ iv.

When a rocket re-enters the atmosphere, its nose becomes very hot. Where does this heat v. energy come from?

Define angular momentum and write its different mathematical forms. vi.

When mud flies off the tyre of a moving bicycle in what direction does it fly? Explian. vii.

A block weighing 4.0 Kg extends a spring by 0.16m from its unstretched position. The block viii. is removed and 0.50 Kg body is hung from the same spring if the spring is now stretched and then released what is its period of vibration?

Define simple pendulum and find the frequency of second pendulum. ix.

Does the acceleration of a simple harmomic oscillator remain constant during its motion? X. Is the acceleration ever zero? Explain

What is the effect of pressure and density on speed of sound. χi. Why does sound travel faster in warm air than in cold air? Explain. xii.

Write short answer to any SIX parts. 4.

Write down the main parts of spectrometer and two uses of spectrometer.

Specific heat of a gas at constant pressure is greater than specific heat at constant volume. Why? ii.

Derive Charle's Law from Kinetic theory of gases. iii.

Is it possible to construct heat engine that will not expel heat into the atmosphere? iv.

How can we increace the internal energy? Explain. ٧.

What do you mean by the term wavefront and ray of light? vi.

What is diffrating grating? Write its equation. vii.

In the Young experiment, one of the slits is covered with blue filter and other with red viii. filter. What would be the pattern of light intensity on the screen?

What do you understand by linear magnification and angular magnification? **SECTION - II**

Attempt any THREE questions. Each question carries 08 Marks.

5.(a) Define scalar product. Write down four characteristics of vector product.

(b) Find the angle of projection of a projectile for which its maximum height and horizontal range are equal.

6.(a) What is gravitational field? Show that in gravitational field work done is independent of path

(b)A church organ consists of pipes, each open at one end, of different lengths. The minimum followed. length is 30mm and the longest is 4 m. calculate the frequency range of the fundamental notes. (Speed of sound =340ms⁻¹)

7. (a) Define and explain the centripetal force and derive the relation for it.

(b) What guage pressure is required in the main for a stream from a fire hose connected to the city mains to reach a vertical geight of 15.0m?

8. (a) Discuss energy conservation in SHM.

(b) Find the average speed of oxygen molecule in the air at STP.

9. (a) Write down the construction and working of a Michelson's interferometer. Give its equation.

(b) A compound microscope has lenses of focal length 1.0cm and 3.0cm. An object is placed 1.2cm from the object lens. If a virtual image is formed 25cm from the eye, calculate the magnification of the instrument.

	DL	SARGO	DHA BOARD	
	Physics (New Scheme)		–Class 11 th)	Time: 20 Minutes
	session (2021)	Óhla	ctive	Marks: 17
	Note: You have four cho	lices for each o	hiertive type question	as A, B, C and D The
	Think is	correct: fill the	at circle in front of the	t duestion number
	The pell, Cutting of	of filling two or	more circles will resu	It in zero mark is a
	A Telescope with obje when focused for infin	ctive of facel la		
	when focused for infin	ity bas langel	ngth 40 cm and eyepie	ce of focal length 5 cm,
	(A) 35 cm (B) 8	iity iias length e	equal to	
	2. The sum of all Energie (A) Elastic potential	cof malanda	(C) 45 cm	(D) 200 cm
-	(A) Elastic potential	s or molecules i	s known as:	
	(C) Internal energy		(B) Kinetic energy	
	3. If the Temperature of (A) Decreases	+ha -dl18.00	(D) Potential energy	
	(A) Decreases	the source incre	eases, the Efficiency of	a carnot engine.
	(C) Remains constant		(D) IIICLE9262	
	4. Dimension of Moment	67	(D) First increase then	decreases
	(A)[M]. (B)[10000	
	$(A)[M] \qquad (B)[1]$	T	(c) $[MT]$	(0) [1]
	5. Weasurement taken b	v Vernier caline	r with land	(b) [L]
	5. Measurement taken b cm.	, same campe	with least count 0.01	cm is recorded as 0.45
	1-7 -1 -1 -1 -1 -1 -1	1 1 0/		
. 1	6. If $A \times B$ points along +ve (A) yz-plane (B) x	7 avia 4	(C) 0.2 %	(D) 2 %
1	(A) yz-plane (B) x	z-plane	tor A and B must lie,	
7	7. In unit vectors $(\hat{i} + \hat{j}) \times$	î.		(D) zz-plane
	(A) No. 11	K is equal to		1-722 plane
	(A) Null vector (B)	i	(c) ;	δ
5	3. If the angle of projection (A) Height attained is mo	on is greater th	10)	(D) 1
	(A) Height attained is mo	ore but range in	at 45", then the	O
1	(B) Height attained is los	c but lange IS	ess	65
	1 -/ THE BUILD DEIGHT SHE			
				5
9				
	A ball is thrown with an Horizontal. Its vertical (A) 25.98 ms ⁻¹ (B) 25.98 ms ⁻¹	comman speed o	of 30 ms ⁻¹ in a direction	30"-1
	(A) 25.98 ms ⁻¹ (B) 3	component vel	ocity is	abovethe
1	O. In work-Fnergy principal	0 ms-1	(C) 10 ms ⁻¹	1.
	O. In work-Energy principl (A) Kinetic energy	ie work done oi	n a body is equal to	(D) 15 ms ⁻¹
	(C) Flastic potenti		(B) Potential energy	
1	(C) Elastic potential ene	rgy	(D) Change in Energy	2011
	1. A body of mass 10 kg in (A) 10 N (B) 98	free falling lift	has weight	Maria de la companya de la companya de la companya de la companya de la companya de la companya de la companya
	_ (0) 3(J V	(0)	Three 1
-	in one Revolution the -	noular dia 1		(D) 980 N
	(A) 60" (B) 36 3. Stocke's Law holds for h	ingular displace	ment covered is	The property of the second
13	3. Stocke's Law holds for t (A) Spherical shape	00	(C) 90°	(D)
	(A) Spherical shape	podies when th	ey have	(D) 180"
	(C) Rectangula- al-	43.3	(B) Curved change	
1	4 A simple part !		(D) Oblong shape	
-	4. A simple pendulum is c (A) 4 Hz (B) 20	completing 20 v	ibration in E	
15	The mind (B) 20	Hz	(C) 200 Hz	s frequency is
13	(A) 2	cy and time per	ind is	(D) 100 Hz
3 	(A) 2 (B) 3	, bei	(C) 1	
16	On loading the prong of a	a tuning fork	(C) 1	(D) 4
	(A) Decreases	ases	m wax, its frequency	and the second
	(C) May increases or doors	2.24	(B) Increases	
17.	A Diffraction grating has	3000 lines ===	(D) Remaining constant	
	A Diffraction grating has (A) $3.33 \times 10^{-1} cm$ (B) 3.3	3m	centimeter, its grating	element is
		SIII	(C) $333 \times 10^{-1} cm$	(D) 3.33cm

Physics (New Scheme) Session (2021)

<u>SARGODHA BOARD</u>

(Group - I, Class 11th)
Subjective
SECTION - I

Time: 2:40 Hours Marks: 68

2. Write short answers to any EIGHT parts.

Write dimensions of (a) Pressure (b) Density

ii. Does a dimensional analasis give any information on constant of proportionality that may appear in an algebraic expression. Explain.

iil. What do you mean by precision and accuracy.

- iv. What do you mean dimension of a physical quantity.
- v. The vector sum of three vectors gives zero resultant. What can be orientation of vectors.

vi. Can you add zero to a null vector.

vii. Define Scalar product of two vectors.

viii. Define impulse and show how it is related to linear momentum.

ix. At what point or points in it's path does a projectile have it's minimum speed, its maximum speed.

x. Define time of flight of a projectile, give it's units.

xi. Define two Dimensional motion.

xii. Explain how Swing is produced in a fast moving cricket ball.

3. Write short answer to any EIGHT parts.

 In which case is more work done when a 50 kg bag of books is lifted through 50 cm, or when a 50 kg crate is pushed through 2m across the floor with a force of 50 N.

ii. Define escape velocity and calculate its value.

iii. Explain the situations in which the work is positive, negative or zero.

iv. Show that orbital angular momentum $L_o=mvr$

v. State the law of conservation on angular momentum. Explain its importance.

vi. A hoop starts rolling without slipping down from the top of an inclined plane. What its speed at the bottom.

vii. Does the acceleration of a simple harmonic oscillator remain constant during its motion? Is the acceleration ever zero? Explain.

viii. If a mass spring system is hung vertically and set into oscillations, why does the motion eventually stop?

ix. Define free and forced oscillations.

x. How are beats useful in tuning musical instruments?

xi. On what factors does the speed of sound in a medium depend?

xii. What is the frequency and the wavelength of third harmonic in a closed organ pipe?

4. Write short answer to any SIX parts.

State Huygen's principle.

ii. Can visible light produce interference fringes? Explainiii. Define magnifying power and resolving power of lens.

iv. Write the conditions for Interference.

v. What is meant by noramal adjustment of telescope,

vi. Prove the relation $W = P\Delta V$

vii. Starting from the relation of pressure of a gas prove that absolute temperature of an ideal gas is directly proportional to the average translational K.E of gas molecules.

viii. Is it possible to construct a heat engine that will not expel heat into the atmosphere.

Derive Boyles law on basis of Kinetic molecular theory of gases.

Attempt any THREE questions. Each question carries 08 Marks.

5.(a) Explain the addition of vectors by rectangular components method.

(b) A ball is thrown horizontally from a height of 10 m with velocity of 21 ms⁻¹. How far off it hit the ground and with what velocity?

6.(a) Define gravitational potential energy. Derive an expression for the absolute potential energy on the surface of the earth.

(b)An organ pipe has a length of 50 cm. Find the frequency of its fundamental note and the next harmonic, when it is closed at one end. Speed of sound = 50 m/s.

7. (a) Define rotational K.E. Also derive the relations for the velocities of disc and hoop moving down an inclined plane at its bottom.

(b) How large must a heating duct be if air moving 3 ms⁻¹ along it can replenish the air in a room of 300 m³ volume every 15 min? Assume the air's density remains constant.

8. (a) What is simple pendulum? Show that the motion of simple pendulum is simple harmonic motion. Also find relation for its time period under and frequency.

(b) Estimate the average speed of Nitrogen molecules in air under standard conditions of pressure and temperature.

9. (a) What is commound microscope? Describe its working. Also relation for its magnifying power.

(b) A light is incident.

(b) A light is incident normally on a grating which has 2500 lines per centimeter. Compute the wavelength of a spectral line for which the deviation in second order is 15°.

	LAUGRE BOARD	
choice which you this	(Group - I-Class 11 th) Objective ices for each objective type que correct; fill that circle in front	Jestion as A, B, C and D. The
question.	ming two or more circles wi	ill result in zero mark in that
1. Travel time light from	sun to earth ic	
· / - · · · · · 205 (B) 8	min 20 c (C) 10 min 20 c	(D) 5 h 20 s
annensions of rela	tion was are as also the discount	ions of:
		(D) Torque
torque in SI uni	tic.	
(A) $N - m^{-1}$ (B)	$N^{-1}-m$ (C) $N^{-1}-m^{-1}$	(D) N-m
4. The dot produst $\hat{i} \cdot \hat{i}$ is	equal to	(6) 11. ""
(A) 0 (B) 1		
5. The maximum height	(C) ·1	(D) \hat{j}
5. The maximum height a	ttained by projectile is:	
$(A) \frac{7}{2a}$ (B)	$\frac{v_i^2 \sin^2 \theta}{g}$ (C) $\frac{v_i^2 \cos^2 \theta}{2g}$	(D) $v_i^2 \cos^2 \theta$
6. The angle of page	2g	(D) <u>g</u>
range are equal to	of a projectile for which its ma	eximum height and horizontal
(A) 45"		
7. Kilowatt hour is the unit	(C) 66"	(D) 76"
The unit	COT:	6
8. If a body of mass 10 km	Vork (C) Force	(D) Momentum
(A) Zero (B) 8	is allowed to fall freely, its app	arent weight becomes:
9. One radian is equal to:	9 N (C) 9.8 N	(D) 10 N
(A) 57.3" (B) 6	7.30	2º
10. A ten meter high tank i	7.3 (C) 87.3"	(D) 60"
efflux be:	s full of water. A hole appears	at ita middle. The speed of
		2
11.At resonance, the trans	$0.9ms^{-1}$ (C) $8.9ms^{-1}$	(D) 5.11ms ⁻¹
(A) Zero (B) M		3.111113
12. The frequency range of	linimum (C) Maximum	(D) Negative
(A) $20 - 20.000 Hz$		
	(B) 60 – 70,00	
(C) 1000 – 120,000 Hz	(D) 15-50,000	0 <i>Hz</i>
13. beats can be heard by r	man when difference of freque	ncy is not more than
	(C/ IU H)	· · · · · · · · · · · · · · · · · · ·
14. The property of bendin	ng of light around obstacles is:	(S) 18 HZ
(A) Reflection (B) Re	efraction (C) Diffraction	(D) Polarization
15. The least distance of dis	stinct vision for normal eyeis:	(S) Folarization
(A) 10 cm (B) 20		(D) 30 cm
The efficiency of diesel e	ngine is about:	(0) 30 CM
(A) $25-30\%$ (B) 3:	5-40% (c) 35-50%	(D) 45-60%
17. The K.E of molecules of	an ideal gas at absolute zero v	vill be:
(A) Zero (B) In	finite (C) Very high	(D) Data

LAHORE ABOARD

Physics (New Scheme) Session (2021)

(Group - I, Class 11th) Subjective SECTION - I

Time: 2:40 Hours Marks: 68

Write short answers to any EIGHT parts.

Write dimensions of (a) Pressure (b) Density

How the uncertainty in the time period of vibrating body is found?

II. Write two uses of dimensions. III.

Does dimensional analysis give any information on constant of proportionality that may iv. appear in ana algebraic expression? Explain.

Suppose the sides of a closed polygon represent vectors arranged head to tail. What is the ٧. sum of these vectors?

Two vecors have unequal magnitudes. Can their sum be zero? Expalin. vi.

A = 2i + 3j - k, B = 3i - 2k, Find A. B vii.

Define range of projectile. Derive its expression. viii.

State the law of conservation of linear momentum, pointing out the importance of isolated ix.

Find the angle of projection for which range of projectile is equal to four times the maximum x.

What is the principle of rocket propulsion? χi.

Explain how Swing is produced in a fast moving cricked ball. xii.

Write short answer to any EIGHT parts.
Calculate the work done in kilo joules in lifting a mass of 10 kg (at a steady velocity) I. through a vertical height of 10m.

When rocket re-enters the atmosphere, its nose cone becomes very hot. Where does this ii. heat energy come from?

(a) gravitational field. (b) conservative field. iii. Define:

Prove that $s = r\theta$ where θ is in radian. iv.

When mud flies off the tyre of a moving bicycle, in what direction does fly? Explain.

Show that orbital angular momentum $L_o = mvr$ vi.

Define forced oscillations. Give its example. vii.

If a mass spring system is hung vertically and set into oscillations, why does the motion viii. eventually stop?

What happens to the period of a simple pendulum if its length is doubled? ix.

Define the terms node and antinode.

If a string vibrates in four segments at a frequency of 120 Hz, determine its fundamental χi. frequency? xii.

If a string vibrates in four segments at a frequency of 120 Hz, determine its fundamental frequency?

Write short answer to any SIX parts. 4.

How would you manage to get more orders of spectra using diffraction grating?

ii. Write two parts of Huygen's principle.

III. Write two conditions for detectable interference.

If a person was looking through a telescope at the full moon, how would the appearance of moon be changed by covering half of the objective lens?
What is optical fibre? Write down two uses of fiber optics. iv.

Is it possible to convert internal energy into mechanical energy? Explain with an example. Give an example of a process in which no heat is transferred to or from the system but the vii. temperature of the system changes.

Derive Charles's law on the basis of kinetic molecular theory of gases. viii.

Is it possible to construct a heat engine that will not expel heat into the atmosphere? ĬΧ.

SECTION - II

Attempt any THREE questions. Each question carries 08 Marks. 5.(a) Distinguish between elastic and inelastic collisions. Show that when two smooth balls undergo elastic collision in one dimension the magnitude of relative velocity of approach is equal to the magnitude of relative velocity of separation.

(b) Two forces of magnitude 10 N and 20 N act on a body in directions making angle 30° and

60" with x-axis respectively. Find the resultant force.

6.(a) Prove that the work done in the gravitational field is independent of path followed by the body. (b) Find the temperature at which the veloviity of sound in air is two times its velocity at 10°C 7. (a) Define terminal velocity. Show that terminal velocity is directly proportional to the square of radius.

(b) A body of moment of inertia I=0.80kh m² about fixed axis, rotates with a constant angular velocity of 100 rad s-1. Calculate its angular momentum L and the torque to sustain this

motion.

8. (a) What is phase? Derive the formula of velocity in case of a horizontal mass-spring system. (b) A heat engine performs 100 J of work at the same time ejects 400 J of heat energy to cold reservoirs. What is the efficiency of the engine?

9. (a) What is cmompound microscope? Describe its construction and working. Also calculate its magnifying power.
(b) A light is incident normally on a grating which has 2500 lines per centimeter. Compute the

wavelength of a spectral line for which the deviation in second order is 15°.

Physics (New Sche	FAISAL me) (Group – II	ABAD BOARD -Class 11 th)	Time: 20 Minutes
Session (2021)	Obj	ective	Marks: 17
choice which you	think is correct; fill th	nat circle in front of	tion as A, B, C and D. The that question numbr with esult in zero mark in that
	ving body is doubled i	te K F ice	6 of the second section
(A) Doubled	(B) Havled ation is based upon la	(C) Unchanged	(D) 4 time
(A) Momentum	(B) Energy	(C) Mass	(D) Charge
3. If pendulum vib	rate with frequency 0.	5Hz then its length w	
(A) 10cm	(B) 50cm	(C) 80cm	(D) 99cm
4. In Michelson in	terferometer a fring is	shifted each time the	mirror is displaced
through:		and Aliente to the	ta attara 🧸 😁 😘
(A) λ	(B) $\frac{\lambda}{2}$	(c) $\frac{\lambda}{\lambda}$ (115)	(D) Zero
Magnifying pov	wer of telescope is:	Zea di ar Naza di la	South Children 12 c. 97
(A) $\frac{f_c}{f_a}$	(B) $\frac{f_a}{f_c}$	(C) $f_{c}f_{u}$	(D) $\frac{1}{f_e f_u}$
5. Dimensions of	$\int F \frac{l}{m}$ are:	apera gord da segrad Bristo Mari Armadon s Sindan	Report State of More to
(A) [M°LT ⁻¹] 7. Dimensions of ra	(B) [ML ⁻¹ T] atio of angular momen	(C) [ML ² T ⁻³]	(D) [ML ⁻¹ T ⁻¹]
(A) [M°LT°]	(B) [M ¹ L ¹ T ¹]	(C) [M ¹ L ² T ¹]	(D) [M ⁻¹ L ⁻¹ T ¹]
3. If $\overrightarrow{A} \cdot \overrightarrow{B} = \begin{vmatrix} \overrightarrow{A} \times \overrightarrow{B} \end{vmatrix} = \begin{vmatrix} \overrightarrow{A} \times \overrightarrow{B} \end{vmatrix}$	hen angle between	\vec{A} and \vec{B} is:	TO TO SHOW THE STATE OF THE STA
(A) 0	(B) $\frac{\Pi}{4}$	(c) $\frac{\Pi}{2}$	(D) II
$9. i.i. = j.i. = \hat{k}.\hat{k} \text{ is}$	equal to:	Wis for A The Sale of Transport	was an american
1, 1, 0	(D) I	- 14 PG 147 PHILE STATE	1010
or iniggs of Infel COL	isumed by a typical ro	cket to overcome our	+ lala
1. Rate of change	of momentum is calle	(C) 10000kg/s	(D) 10kg/s
(A) Force	(B) Pressure	(C) Tension	(D) Impulse
2. Pull of the Earth	on 20kg body on sur	face of Earth is:	(D) impulse
(A) 20N	on 20kg body on sur (B) 196N	(C) 19.6N	(D) 1960N
is. Rotational kine	tic energy of the hoo	p moving down on in	clined plane is:
(A) 1 mv ²	(B) mv ²	(c) $\frac{1}{4}mV^2$	(D) $\frac{3}{4}mV^2$
4. Tuning fork is s	ource of:	dentity of the second	. 491
(A) Heat	(B) Light	(C) Sound (D) Electro-magnetic waves
	AID A LANGEN TILL AID!	ates in 2 segments T	he distance between two
7.1	the second secon		
(A) 1m	(B) 2m.	(C) 0.5m	(D) 4m
5. Highest efficien	cy of heat engine wh	ose lower temperati	(D) 4m ure is 17°C and higher
temperature is 2	.00 C 15.	THE SILE ALW ROLL	Cis 17 Canu night
(A) 70%		(C) 35%	(D) 38%-
. SI unit of molar			(D) 3870
(A) J mol ⁻¹ K ⁻¹		(C) I mol K	/D\ I mal-1

FAISALABAD BOARD

Physics (New Scheme) Session (2021)

(Group -II, Class 11th) Subjective SECTION - I

Time: 2:40 Hours Marks: 68

Write short answers to any EIGHT parts. 2.

 $T=2\pi$

g is dimensionally correct. Show that formula

ii.

Add the following velocities given in nits up to appropriate precision: 23.1, 0.002, 0.00023, 5-12

Define the terms (a) Precision (b) Dimensions of physical quantities.

Write the dimensions of (a) Coefficient of viscosity ¹⁷ (b) Energy.

Define the terms (a) Resultant vector (b) subtraction of vector. iii. iv. ٧.

What is the unit vector in the direction of the vector A = 4i - 3i? ٧i.

Suppose the sides of a closed polygon represent vector arranged head to tail. vii.

What is the sum of these vectors?
Define the terms (a) The time of flight (b) the range of projectile. viii.

ix.

What happened when light body colliedes with a massive body at rest?
Find the time of flight of projectile when it is thrown at an angle of 30° with horizontal.
Explain the difference between laminar flow and turbulent flow.

XI.

Explain what do you understand by rocket motion? XII. Write short answer to any EIGHT parts.

Calculate the work done in kilo joules in lifting a mass of 10kg through a vertical height of İ,

A person holds a bag of groceries while standing still, talking a friend. A car is stationary ii. with its engine running. From the stand point of work, how are these two situations

Derive the mathematical expression for escape velocity. iii. ĺ٧.

What is meant by moment of inertia? Explain its significance.
What is meant by angular momentum? Also define law of conservation of langular ٧.

νi. Define angular acceleration. How angular and linear velocities are related? Explain.

What should be the length of a simple pendulum whose period is 1 second at a place vii. where g = 9.8 ms - 2.

If a mass spring system is hung vertically and set into oscillations, why does the motion viii. eventually stop?

IX.

Describe two common phenomena in which resonance plays an important role. Is it possible for two identical waves travelling in the same direction along a string to give х. rise to a stationary wave? Explain.

Find the frequencies produced in organ pipe when it is open at both ends. What are beats? Also mention one use of beats. xi.

xii.

Write short answer to any SIX parts. In the Young's experiment, one of the slits is covered with blue filter and other with red filter. What would be the pattern of light intensity on the screen? Differentiate the interference and diffraction patterns of light. İ.

ii. iii. Write the conditions for detectable interference of light waves.

iv.

Why would it be advantageous to use blue light with a compound microscope? How convex lens act as a magnifying glass? Explain.

Give an example of a process in which no heat is transferred to or from the system but the vi. temperature of the system changes. vii

Is it possible to convert internal energy into mechanical energy? Explain with an example.

viii.

Define internal energy of a substance. Is it state function?
I low first law of thermodynamics explains human metabolism? Explain.

SECTION - II

Attempt any THREE questions. Each question carries 08 Marks.

Attempt any THREE questions. Each question carries 08 Marks.
5.(a) State and prove law of conservation of linear momentum.
(b) Two forces of magnitude 10N and 20N act on a body in directions making angle 30° and 60° wills -axis respectively. Find the resultant force.
6.(a) Explain the interconversion of potential energy and kinetic energy (i) when there is no frictional fore 0 when frictional force is present.
(b) The frequency of the note emitted by a stretched string is 300Hz. What will be the frequency of the note when the length of the wave is reduced by one third without? Changing the tension?
7. (a) State and prove Torricelli's Theorem with diagram.
(b) Calculate the angular momentum of a star mass 2.0×105km, if it makes one complete

(b) Calculate the angular momentum of a star mass 2.0×105km, if it makes one complete rotation about its axis once in 20 days. What is the kinetic energy?

8. (a) Define simple pendulum. Show that its motion is SHM. Discuss its working derive relative for its time. for its time period.

(b) Estimate average speed of nitrogen molecules in air under standard conditions of

pressure and temperature.

9. (a) Explain the diffraction of X-rays by crystal and derive Bragg's law. What are the uses of diffraction of X-rays.

(b) A simple astronomical telescope in normal adjustment has an objective of focal length 100cm and eye piece of focal length 5.0cm.
 (i) Where is the final image formed?
 (ii) Calculate the angular magnification

Answers (Sahiwal Board-I)

 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
C	В	Α	D	C	Α	A	C	В	С	D	D	С	С	В	В	D

Answers (Sahiwal Board-II)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Ċ	A	В	C	С	D	, D	С	В	D	В	С	В.	Α	D	С	Α

Answers (Multan Board-I)

		•	1	1 1 1	,			12.1						15		
В	Α	C	D	D	С	В	A	Α	В	С	D	D	В	С	D	В

Answers (D. G Khan Board-I)

		100										13			34	1 1
С	В	В	D	В	С	A	D	В	D	Α	C	Α	D	С	DC	D

Answers (Rawalpindi Board-I)

														15		
D	С	В	Α	В	В	Α	В	Α	С	Α	D	В	A	С	В	С

Answers (Sargodha Board-I)

					100					100	. ,						
1	2	- 3	4	5	6	7.	8	9	10	11	12	13.	14	15	16	17	
С	С	В	D	D	С	Α	Α	D	D	В	В	Α	Α	С	Α	Α	

Answers (Lahore Board-I)

-	2	11 21		3.5	19, 05		9.7	7	Sec. 11.		- 1,0	•10	14		7.0	
Α	С	D	В	Α	D	В	Α	P	В	С	D	С	C	C	В	Α

Answers (Faisalabad Board-I)

1 2	3	4	. 5	6	7	8	9	10	11	12	13	14	15	16	17
D B	D	В	В	Α.	Α	В	В	С	A	В	Α	C	В	C	A
